Navigation of mobile robot motion
Subject Areas : Design of Experiment
1 - Al-Furat Al-Awsat Technical University, Technical Institute of Al- Diwaniyah, Department of Mechanical Techniques, Iraq Country
Keywords: Keywords:Robotics, Effective Procedure, Navigation, Methods,
Abstract :
As one of the fastest growing fields in engineering, robotics is designed to perform in dangerous and difficult work environments while easing labor-intensive duties. One of the major issues in robotics is the need to design a fast and effective procedure for the navigation of mobile robots. Mobile robots have been used to execute tasks such as vital medical patrol and rescue, planetary exploration, material handling, etc. It is therefore important to develop intelligent mobile robots capable of moving independently in different environments. Thus, in this work, a study on the navigation of mobile robots with methods applied was carried out.
Abiyev, R., Ibrahim, D. & Erin, B. (2010) ‘Navigation of mobile robots in the presence of obstacles’, Advances in Engineering Software. Elsevier Ltd, 41(10–11), pp. 1179–1186. doi: 10.1016/j.advengsoft.2010.08.001.
Alexander A. Gridnev, Alexander A. Dyumin, Timofei I. Voznenko, Gleb A. Urvanov, E. V. C. (2017) ‘The Framework for Robotic Navigation Algorithms Evaluation’, IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), pp. 855–859.
Algabri, Mohammed, Hassan Mathkour, H. R. & Alsulaiman, M. (2015) ‘Comparative study of soft computing techniques for mobile robot navigation in an unknown environment’, Computers in Human Behavior, 50, pp. 2–56.
Arai T, Pagello E, P. LE (2002) ‘Advances in multi-robot systems’, IEEE Trans Robot Autom, 18(5), pp. 655–62.
Besime E. (2011) ‘Navigation Of Mobile Robots In The Presence Of Obstacles (A Comparative Study)’.
Bhattacharya P, G. M. (2008) ‘Roadmap-Based Path Planning- Using the Voronoi Diagram for a Clearance-Based Shortest Path.’, IEEE Robotics and Automation, 15(2), pp. 58-66.
Bloise, N. Capello, E. Dentis, M. & E. P. (2017) ‘Obstacle avoidance with potential field applied to a rendezvous maneuver’, 7, p. 1042.
Borenstein J, K. Y. (1989) ‘Real-time obstacle avoidance for fast mobile robots.’, IEEE Trans Syst Man Cybern, 19.(.), pp. 1179–1187.
Boris Crnokić, Snježana Rezić, S. P. (2016) ‘Comparision of Edge Detection Methods for Obstacles Detection in a Mobile Robot Environment’, Proceedings of the 27th DAAAM International Symposium, pp. 0235–0244.
Boroujeni, Z. et al. (2018) ‘Autonomous Car Navigation Using Vector Fields’, IEEE Intelligent Vehicles Symposium, Proceedings, 2018-June(November), pp. 794–799. doi: 10.1109/IVS.2018.8500446.
Bounini, F.. Gingras, D Pollart, H.& D. G. (2017) ‘Modified artificial potential field method for online path planning applications’, IEEE Intelligent Vehicles Symposium (IV), pp. 180–185. Fedosin, S. G. (2016) ‘The Concept of the General Force Vector Field’, Open Access Library Journal, 3(3), pp. 1–15.
Burgard, W L. E. K. & S. T. (2005) ‘Principles of Robot Motion’, MIT Press, Cambridge, MA,.
Burgard, W. Fox, D. Moors, M Simmons, .R. & S. T. (2000) ‘Collaborative multi-robot exploration’, In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), San Francisco.
Burke, J. M. Garibald, M. N. (2009) ‘Shared Potential Fields and their place in a multi-robot co-ordination taxonomy’, Robotics and Autonomous Systems, 57(10), pp. 1048-1055.
Cao Qixin, Huang Yanwen, Z. J. (2006) ‘An Evolutionary Artificial Potential Field Algorithm for Dynamic Path Planning of Mobile Robot.’, IEEE International Conference on Intelligent Robots and Systems.
Ceballos, R .N. D. M., Valencia, J. A., & Ospina, N. L. (2010) ‘Quantitative performance metrics for mobile robots navigation.’, InTech. Rainer Palm∗ Abdelbaki Bouguerra (2011) ‘Navigation of mobile robots by potential field methods and market-based optimization’, pp. 1–12.
Chandra (2007) ‘Triangulation and trilateration’, Higher Surveying, pp. 1–38.
Chivarov, N., Paunski, Y., Angelov, G., Radev, D., Penkov, S., Vladimirov, V., et al. (2012) ‘ROBCO 11-intelligent modular service mobile robot for elderly care.’, Proceedings of the RAAD 2014 International Journal Automation Austria IJAA, (2), pp. 156–164.
De Lima D. A. & Pereira G. A. S. (2013) ‘Navigation of an autonomous car using vector fields and the dynamic window approach’, Journal of Control, Automation and Electrical Systems, 24(1–2), pp. 106–116.
Dongbing, G and Housheng, H. (2006) ‘Receding horizon tracking control of wheeled mobile robots’, IEEE Transactions Control Systems Technology, 14, pp. 743-749.
Erin, B., Abiyev, R. and Ibrahim, D. (2010) ‘Teaching robot navigation in the presence of obstacles using a computer simulation program’, Procedia - Social and Behavioral Sciences, 2(2), pp. 565–571. doi: 10.1016/j.sbspro.2010.03.064.
Ge S. S. & Y. J. Cui (2002) ‘Dynamic motion planning for mobile robots using potential field method’, Autonomous Robots, 13(3), pp. 207–222.
Geerinck, J. D. B. F. and T. (2004) ‘Mobile Robots with Shared Autonomy’, Vrije Universiteit Brussel, Brussels, Belgium. Ghorbani A, Shiry S, N. A. (2009) ‘Using Genetic Algorithm for a Mobile Robot Path Planning’, IEEE International Conference on Future Computer and Communication, pp. 164–166.
Gentsos, C. Sotiropoulou, C. L. Nikolaidis, S & N. V. (2010) ‘Real-time canny edge detection parallel implementation for FPGAs’, IEEE. Electron. Circuits, Syst. ICECS 2010 -, pp. 499–502.
Gomez EJ, Martinez Santa F, M. S. F. (2013) ‘Comparative Study of Geometric Path Planning Methods for a Mobile Robot: Potential Field and Voronoi Diagrams.’, In IEEE International Congress of Engineering Mechatronic and Automation (CIIMA), Colombia, pp. 1-6.
Goris, K. (2005) ‘Autonomous mobile robot mechanical design.’, Vrije Universiteit Brussel. Choset, H. Lynch, K. M. Hutchinson, S. Kantor, G..
Hameedah Sahib Hasan, Mohamed Hussein, Shaharil Mad Saad, and M. A. M. D. (2019) ‘Graphical User Interface ( GUI ) for Local Positioning System Based on Labview’, International Journal of Machine Learning and Computing, 9(2), pp. 236–241. doi: 10.18178/ijmlc.2019.9.2.792.
Han, J.; Seo, Y. (2017) ‘Mobile robot path planning with surrounding point set and path improvement.’, Appl. Soft Comput., 57, pp. 35–47.
Holmberg, R. (2000) ‘Design and Development of Powered-Castor Holonomic Mobile Robots’, Stanford University.
Hoy, M. A. S. M. & A. V. S. (2015) ‘Algorithms for Collision Free Navigation of Mobile Robots in Complex Cluttered Environments: A Survey’, Robotica, Volume 33, Issue 03, pp 463-497, 20, 33(03), pp. 463–497.
Hwang YK, A. N. (1988) ‘Path planning using a potential field representation’, IEEE international conference on robotics and automation, 1.
Iqbal, M. (2012) ‘Edge Detection for Mobile Robots on Lunar Surface and Surroundings’, BRAC University; Dhaka, Bangladesh. Baxter, J. L., E. K.
Jean-François Bonnefon, Azim Shariff, and I. R. (2016) ‘The social dilemma of autonomous vehicles’, Science, 352, pp. 1573–1576.
Jones, J. L. (2006) ‘Robots at the tipping point: The road to iRobot Roomba.’, Robotics & Automation Magazine, IEEE, 13(1), pp. 76–78.
Kala, R. (2014) ‘Coordination in Navigation of Multiple Mobile Robots’, Cybernetics and Systems, 45(1), pp. 1–24.
Kalyanmoy Deb (2015) ‘Multi-Objective Evolutionary Algorithms.’, Springer Handbook of Computational Intelligence. Springer, Berlin, Heidelberg., (995–1015).
Mahdi, A. Q,. QasMarrogy, G. A.& M. M. I. (2014) ‘Comparison of the Edge Detection Methods to Detect , Identify and Locate the Obstacles for Agricultural Robotic Vehicles’, Int. J. Res. Comput. Appl. Robot., 2, pp. 5–17.
Marta C. Mora and Josep Tornero, Prahlad Vadakkepat, K. C. T. , W. M.- & Liang. (2000) ‘Evolutionary Artificial Potential Fields and Their Application in Real Time Robot Path.’, Proceedings of the 2000 Congress on Evolutionary Computation., 1, pp. 256–263.
Miao H, T. Y. (2013) ‘Dynamic Robot Path Planning using an Enhanced Simulated Annealing Approach’, ELSEVIER Applied Mathematics and Computation, 222, pp. 420–437.
Montiel, O. and , Ulises Orozco-Rosas, R. S. (2015) ‘Path planning for mobile robots using bacterial potential field for avoiding static and dynamic obstacles’, Expert Systems with Applications, 42(12), pp. 5177 – 5191.
Nelson D. R., Barber, D. B.. McLain, T. W & R. W. B. (2007) ‘Vector field path following for miniature air vehicles’, IEEE Transactions on Robotics, 23(3), pp. 519–529.
Nelson David Munoz-Ceballos, G. S.-R. (2022) ‘Performance criteria for evaluatingmobile robot navigationalgorithms: a review’, Revista Iberoamericana de Automática e Informática Industrial, 19, pp. 132–143.
Ni J, Wu L, Fan X, Y. S. (2016) ‘Bioinspired Intelligent Algorithm and Its Applications for Mobile Robot Control: A Survey.’, Comput Intell Neurosci, pp. 1-15.
Pandey A, Pandey S, P. D. (2017) ‘Mobile Robot Navigation and Obstacle Avoidance Techniques : A Review’, International Robotics & Automation Journal, (May), pp. 1–12. doi: 10.15406/iratj.2017.02.00023.
Patle, B. K., Babu L, G., Pandey, A., Parhi, D. R., & Jagadeesh, A. (2019) ‘A review: On path planning strategies for navigation of mobile robot.’
Pilarski, T., Happold, M., Pangels, H., Ollis, M., Fitzpatrick, K., & Stentz, A. (2002) ‘The demeter system for automated harvesting. Autonomous Robots’, 13(1), pp. 9–20.
Pradhan, S. K. Parhi, D. R. Panda, A. K. & R. K. B. (2006) ‘Potential field method to navigate several mobile robots’, Applied Intelligence, 25(3), pp. 321-333.
Rasekhipour, Y. Khajepour A.,. Chen S. K, & B. L. (2017) ‘A potential field-based model predictive path-planning controller for autonomous road vehicles’, IEEE Transactions on Intelligent Transportation Systems, 18(5), pp. 1255–1267.
Roland Siegwart, I. R. N. and D. S. (2004) ‘Introduction to Autonomous Mobile Robots book’, A Bradford Book The MIT Press Cambridge, Massachusetts London, England, p. 317.
Sathiya V. & Chinnadurai M. (2019) ‘Evolutionary Algorithms-Based Multi-Objective Optimal Mobile Robot Trajectory Planning’, Cambridge University Press, pp. 1–20.