Factors Affecting the Efficiency of Hydraulic Flushing in Storm System for Sedimentation Control: A Review
Subject Areas : EconomicsGeok Teng Leong 1 , Charles Hin Joo Bong 2
1 - Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia
2 - Faculty of Engineering, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, MALAYSIA
Keywords: Uncertainty, Sedimentation, Risk Assessment, sewer, Hydraulic Flushing,
Abstract :
Hydraulic flushing using flushing device is cost effective in removing sediment deposition in sewer system. This technique is especially popular in European countries in controlling sedimentation in closed conduit system. The quick release of large water volume leads to a flush wave under high turbulent flow mimicking dam break phenomenon to flush out the sediment accumulated in sewer. A brief discussion on the factors affecting the efficiency of hydraulic flushing are presented in this paper. These factors can be divided into sewer characteristics, sediment characteristics, flushing device characteristics and environmental factors. Each factor will determine the design of the flush device system. Recommendations of risk assessment techniques that help to establish the failure modes in the sediment flushing system for possible practices, assessing the impact, and planning for corrective actions were also presented. This review would be helpful to support project managers and engineers to establish control plan on the design of hydraulic flushing device for sewer system.
Ab Ghani, A. (1993). Sediment transport in sewers [Doctoral dissertation, University of Newcastle upon Tyne, UK].
Anbari, M. J., Tabesh, M., & Roozbahani, A. (2017). Risk assessment model to prioritize sewer pipes inspection in wastewater collection networks. Journal of Environmental Management, 190, 91–101. https://doi.org/10.1016/j.jenvman.2016.12.052
ASCE & WEF (1992). Design and Construction of Urban Stormwater Management Systems. American Society of Civil Engineers. https://doi.org/10.1061/9780872628557
Bertrand-Krajewski, J.-L. (2008). Flushing urban sewers until the beginning of the 20th century. 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK.
Bertrand-Krajewski, J.-L., Bardin, J.-P., Gibello, C., & Laplace, D. (2003). Hydraulics of a sewer flushing gate. Water Science and Technology, 47(4), 129–136. https://doi.org/10.2166/wst.2003.0237
Bertrand-Krajewski, J.-L., Campisano, A., Creaco, E., & Modica, C. (2005). Experimental analysis of the Hydrass flushing gate and field validation of flush propagation modelling. Water Science and Technology, 51(2), 129–137. https://doi.org/10.2166/wst.2005.0040
Bong, C. H. J., Lau, T. L., & Ab Ghani, A. (2013a). Hydraulics characteristics of tipping sediment flushing gate. Water Science and Technology, 68(11). https://doi.org/10.2166/wst.2013.498
Bong, C. H. J., Lau, T. L., & Ghani, A. A. (2013b). Verification of equations for incipient motion studies for a rigid rectangular channel. Water Science and Technology, 67(2). https://doi.org/10.2166/wst.2012.580
Bong, C. H. J., Lau, T. L., & Ab. Ghani, A. (2014). Sediment size and deposition characteristics in Malaysian urban concrete drains - a case study of Kuching City. Urban Water Journal, 11(1). https://doi.org/10.1080/1573062X.2012.750371
Bong, C. H. J., Lau, T. L., & Ab. Ghani, A. (2016). Potential of tipping flush gate for sedimentation management in open stormwater sewer. Urban Water Journal, 13(5). https://doi.org/10.1080/1573062X.2014.994002
Bong, C. H. J., Lau, T. L., & Ab Ghani, A. (2017). Duration of hydraulic flushing and its effect on sediment bed movement. 37th IAHR World Congress, Kuala Lumpur, Malaysia.
Bong, C. H. J., Lau, T. L., & Ghani, A. A. (2013b). Verification of equations for incipient motion studies for a rigid rectangular channel. Water Science and Technology, 67(2). https://doi.org/10.2166/wst.2012.580
Campisano, A., Creaco, E., & Modica, C. (2004). Experimental and numerical analysis of the scouring effects of flushing waves on sediment deposits. Journal of Hydrology, 299(3), 324–334. https://doi.org/https://doi.org/10.1016/j.jhydrol.2004.08.009
Campisano, A., Creaco, E., & Modica, C. (2007). Dimensionless Approach for the Design of Flushing Gates in Sewer Channels. Journal of Hydraulic Engineering, 133(8), 964–972. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:8(964)
Campisano, A., Creaco, E., & Modica, C. (2008). Laboratory investigation on the effects of flushes on cohesive sediment beds. Urban Water Journal, 5(1), 3–14. https://doi.org/10.1080/15730620701726259
Campisano, A., Modica, C., Creaco, E., & Shahsavari, G. (2019). A model for non-uniform sediment transport induced by flushing in sewer channels. Water Research, 163, 114903. https://doi.org/https://doi.org/10.1016/j.watres.2019.114903
Crabtree, R. W. (1989). Sediments in Sewers. Water and Environment Journal, 3(6), 569–578. https://doi.org/https://doi.org/10.1111/j.1747-6593.1989.tb01437.x
Creaco, E., & Bertrand-Krajewski, J.-L. (2007). Modelling the flushing of sediments in a combined sewer. Novatech, Lyon, France.
Dettmar, J. (2007). A new planning procedure for sewer flushing. Novatech, Lyon, France.
Dettmar, J., Rietsch, B., & Lorenz, U. (2002). Performance and operation of flushing devices - results of a field and laboratory study. 9th International Conference on Urban Drainage, 1–10.Portland, Oregon, USA.
Fan, C.-Y., Field, R., Pisano, W. C., & Barsanti, J. (2001). Sewer and tank flushing for sediment, corrosion, and pollution control. Journal of Water Resources Planning and Management, 127(3), 194–201.
Gendreau, N., le Guennec, B., Poinot-Chazal, J. P., & Sechet, P. (1993). Sediment motion under flood wave - use of partial release of stored water by a weir. 6th International Conference on Urban Storm Drainage, 760–765.
Guo, Q., Fan, C.-Y., Raghaven, R., & Field, R. (2004). Gate and Vacuum Flushing of Sewer Sediment: Laboratory Testing. Journal of Hydraulic Engineering, 130(5), 463–466. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:5(463)
Ip, W. C., Hu, B. Q., Wong, H., & Xia, J. (2009). Applications of grey relational method to river environment quality evaluation in China. Journal of Hydrology, 379(3–4), 284–290. https://doi.org/10.1016/j.jhydrol.2009.10.013
Jean, M.-È., Duchesne, S., Pelletier, G., & Pleau, M. (2018). Selection of rainfall information as input data for the design of combined sewer overflow solutions. Journal of Hydrology, 565, 559–569. https://doi.org/https://doi.org/10.1016/j.jhydrol.2018.08.064
Korving, H., van Noortwijk, J. M., van Gelder, P. H. A. J. M., & Clemens, F. H. L. R. (2009). Risk-based design of sewer system rehabilitation. Structure and Infrastructure Engineering, 5(3), 215–227. https://doi.org/10.1080/15732470601114299
Liu, C., Lv, W., Liu, Q., Zhou, J., Wang, Y., Zhang, X., & Zhou, J. (2021). Analysis and calculation of sediment scouring rate at different locations of storm sewer. Water Science and Technology, 84(6), 1340–1353. https://doi.org/10.2166/wst.2021.334
Lorenzen, A., Ristenpart, E., & Pfuhl, W. (1996). Flush cleaning of sewers. Water Science and Technology, 33(9), 221–228. https://doi.org/10.1016/0273-1223(96)00390-3
McDermott, R. E., Mikulak, R. J., & Beauregard, M. R. (2008). The Basics of FMEA (2nd ed.). CRC Press.
Meyer-Peter, E., & Muller, R. (1948). Formulas for bed-load transport. 2nd Congress of the International Association of Hydraulic Research, Stockholm, Sweden.
Montes, C., Kapelan, Z., & Saldarriaga, J. (2021). Predicting non-deposition sediment transport in sewer pipes using Random forest. Water Research, 189. https://doi.org/10.1016/j.watres.2020.116639
Montes, C., Ortiz, H., Vanegas, S., Kapelan, Z., Berardi, L., & Saldarriaga, J. (2022). Sediment transport prediction in sewer pipes during flushing operation. Urban Water Journal, 19(1), 1–14. https://doi.org/10.1080/1573062X.2021.1948077
Nalluri, C., & Alvarez, E. M. (1992). The Influence of Cohesion on Sediment Behaviour. Water Science and Technology, 25(8), 151–164. https://doi.org/10.2166/wst.1992.0189
Penn, R., Schuetze, M., Jens, A., & Friedler, E. (2018). Tracking and simulation of gross solids transport in sewers. Urban Water Journal, 15(6), 584–591. https://doi.org/10.1080/1573062X.2018.1529190
Pisano, W. C., O’Riordan, O. C., Ayotte, F. J., Barsanti, J. R., & Carr, D. L. (2003). Automated Sewer and Drainage Flushing Systems in Cambridge, Massachusetts. Journal of Hydraulic Engineering, 129(4), 260–266. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:4(260)
Ristenpart, E. (1998). Solids transport by flushing of combined sewers. Water Science and Technology, 37(1), 171–178. https://doi.org/10.2166/wst.1998.0042
Safari, M. J. S., Mohammadi, M., & Gilanizadehdizaj, G. (2014). On the effect of cross sectional shape on incipient motion and deposition of sediments in fixed bed channels. Journal of Hydrology and Hydromechanics, 62(1), 75–81. https://doi.org/10.2478/johh-2014-0003
Schaffner, J., & Steinhard, J. (2006). Numerical investigation of the self-acting flushing system HydroFlush GS in Frankenberg/Germany. 2th Conference on Sewer Operation and Maintenance, Vienna, Austria.
Schaffner, J., & Steinhardt, J. (2013). Numerical investigations on the influence of hydraulic boundary conditions on the efficiency of sewer flushing. 7th International Conference on Sewer Processes and Networks, Sheffield, UK https://www.researchgate.net/publication/280567477
Schellart, A. N. A., Tait, S. J., & Ashley, R. M. (2010). Estimation of Uncertainty in Long-Term Sewer Sediment Predictions Using a Response Database. Journal of Hydraulic Engineering, 136(7), 403–411. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000193
Shahsavari, G., Arnaud-Fassetta, G., Bertilotti, G. R., Campisano, A., & Riou, F. (2015). Bed evolution under one-episode flushing in a trunk sewer in Paris, France. International Journal of Civil and Environmental Engineering, 9(7), 759–768. https://www.researchgate.net/publication/276275265
Shahsavari, G., Arnaud-Fassetta, G., & Campisano, A. (2017). A field experiment to evaluate the cleaning performance of sewer flushing on non-uniform sediment deposits. Water Research, 118, 59–69. https://doi.org/https://doi.org/10.1016/j.watres.2017.04.026
Shields, A. (1936). Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung [Doctoral dissertation, Mitt. Preuss. Versuchsanst. Wasserbau Schiffbau].
Shirazi, R. H. S. M., Bouteligier, R., Willems, P., & Berlamont, J. (2008). Preliminary results of investigating proper location of flushing tanks in combined sewer networks for optimum effect. 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK.
Sousa, V., Matos, J. P., & Matias, N. (2014). Evaluation of artificial intelligence tool performance and uncertainty for predicting sewer structural condition. Automation in Construction, 44, 84–91. https://doi.org/https://doi.org/10.1016/j.autcon.2014.04.004
Swamee, P. K., & Sharma, A. K. (2013). Optimal design of a sewer line using Linear Programming. Applied Mathematical Modelling, 37(6), 4430–4439. https://doi.org/https://doi.org/10.1016/j.apm.2012.09.041
Todeschini, S., Ciaponi, C., & Papiri, S. (2008). Experimental and numerical analysis of erosion and sediment transport of flushing waves. 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK.
Walski, T., Falco, J., McAloon, M., & Whitman, B. (2011). Transport of large solids in unsteady flow in sewers. Urban Water Journal, 8(3), 179–187. https://doi.org/10.1080/1573062X.2011.581298
Wu, Z., & Abdul-Nour, G. (2020). Comparison of Multi-Criteria Group Decision-Making Methods for Urban Sewer Network Plan Selection. CivilEng, 1(1), 26–48. https://doi.org/10.3390/civileng1010003
Yang, H., Zhu, D. Z., Zhang, Y., & Zhou, Y. (2019). Numerical investigation on bottom shear stress induced by flushing gate for sewer cleaning. Water Science and Technology, 80(2), 290–299. https://doi.org/10.2166/wst.2019.269
Yu, D., Dian, L., Hai, Y., Randall, M. T., Liu, L., Liu, J., Zhang, J., Zheng, X., & Wei, Y. (2022). Effect of rainfall characteristics on the sewer sediment, hydrograph, and pollutant discharge of combined sewer overflow. Journal of Environmental Management, 303, 114268. https://doi.org/https://doi.org/10.1016/j.jenvman.2021.114268