A Fractile Model for Stochastic Interval Linear Programming Problems
Subject Areas : Urban PlanningHadi Nasseri 1 , Salim Bavandi 2
1 - Department of Mathematics, University of Mazandaran, Babolsar, Iran
2 - Department of Mathematics, University of Mazandaran, Babolsar, Iran
Keywords: Random variable, Random interval variable, Random interval programming, Fractile model,
Abstract :
In this paper, we first introduce a new category of mathematical programming where the problem coefficients are interval random variables. These problems include two different kinds of ambiguity in the problem coefficients which are being interval and being random. We use Fractile method to solve these problems. In this method, using the existing method, we change the interval problem coefficients to random mode and then we solve the random problem using Fractile method. Also, a numerical example is presented to show the effectiveness of this model. Finally, we emphasize that this approach can be useful for the model with multi-objective as a generalized model in the future study.
Bavandi, S., Nasseri, S.H., & Triki, C. (2020). Optimal Decision Making in Fuzzy Stochastic Hybrid Uncertainty Environments and Their Application in Transportation Problems. In: Cao B. (eds) Fuzzy Information and Engineering-2019. Advances in Intelligent Systems and Computing,1094. Springer, Singapore. https://doi.org/10.1007/978-981-15-2459-2_5.
Bhurjee, A.K., & Panda, G. (2016). Sufficient optimality conditions and duality theory for interval optimization problem. Ann. Oper. Res. 243(1), 335–348.
Casella, G & Berger, R.L. (2001). Statistical Inference. DuxburyPress.
Chanas, S & Kuchta, D. (1996). Multiobjective programming in optimization of interval objective functions - a generalized approach, European Journal of Operational Research, Volume 94 Pages 594-598.
Charnes, A., & Cooper, W. W. (1959). Chance constrained programming. Management Science, 6,73–79.
Charnes, A., & Cooper, W. W. (1963). Deterministic equivalents for optimizing and satisficing under chance constraints. Operations Research, 11, 18–39.
Gen, M., & Cheng, R. (1997). Genetic Algorithms and Engineering Design. New York: Wiley.
Geoffrion, A. M. (1967). Stochastic programming with aspiration or fractile criteria. Management Science, 13, 672–679.
Grimmett, G. R., & Stirzaker, D. R. (2001). Probability and Random Processes. Oxford University Press.
Hildenbrand, W. (1975). Core and Equilibria of a Large Economy. Princeton: Princeton University Press, 85, 672-674.
Hladik, M. (2015). AF solutions and AF solvability to general interval linear systems. Linear Algebra Appl, 465, 221-238.
Hladik, M. (2014). How to determine basis stability in interval linear programming. Optim. Lett. 8, 375-389.
Inuiguchi, M., & Kume, Y. (1994).Minimax regret solution to linear programming problems with an interval objective function. Eur. j. Oper. Res., 86,526 - 539.
Ishibuchi, H., & Tanaka, H. (1989). Formulation and analysis of linear programming problem with interval coefficients, J. Jpn. Ind. Manage. Assoc., vol. 40, pp. 320329.
Jana, M., & Panda, G. (2014). Solution of nonlinear interval vector optimization problem. Oper. Res. 14(1), 71–85.
Kall, P., & Mayer, J. (2004). Stochastic Linear Programming. Springer.
Kataoka, S. (1963). A stochastic programming model. Econometrica, 31, 181–196.
Knill,O. (2009). Probability Theory and Stochastic Processes with Applications, Overseas Press.
Kruse R., & Meyer, K. D. (1987). Solving nonlinear interval optimization problem using stochastic programming technique. OPSEARCH, 54, 752–765 (2017).
Matheron, G. (1975). Random Sets and Integral Geometry. New York: John Wiley & Sons.
Miranda, E., Couso, I., & Gil, P. (2005). Random intervals as a model for imprecise information. Fuzzy Sets and Systems, 154, 386-412.
Moore, E. R., Kearfott, R. B., & Cloud, M. J. (2009). “Introduction to INTERVAL ANALYSIS,”Siam, Philadelphia.
Nasseri, S. H., & Bavandi, S. (2018). Amelioration of Verdegay̕s approach for fuzzy linear programs with stochastic parameters. Iranian Journal of Management Studies, 11(1), 71-89. doi: 10.22059/ijms.2018.236147.672722.
Nasseri S. H., & Bavandi S. (2017). A Suggested Approach for Stochastic Interval-Valued Linear Fractional Programming problem. International Journal of Applied Operational Research. 7 (1):23-31.
S. H. Nasseri & S. Bavandi (2019). Fuzzy Stochastic Linear Fractional Programming based on Fuzzy Mathematical Programming, Fuzzy Information and Engineering. DOI: 10.1080/16168658.2019.1612605.
Sakawa, M., Yano, H., & Nishizaki, I. (2013). Linear and Multiobjective Programming with Fuzzy Stochastic Extensions, Springer.
Sengupta, A., Pal, T. K., & Chakraborty, D. (2001). Interpretation of inequality constraints involving interval coefficients and a solution to interval linear programming, Fuzzy Sets and Systems, 119(1), 129-138.
Shaocheng, T. (1994). Interval number and fuzzy number linear programming. Fuzzy Sets and Systems, 66, 301-306.
Subulan, K. (2020). An interval-stochastic programming based approach for a fully uncertain multi-objective and multi-mode resource investment project scheduling problem with an application to ERP project implementation, Expert Systems With Applications, doi:10.1016/j.eswa.2020.113189
Suprajitno, H., & Mohd, I. B. (2008). Interval Linear Programming, presented in IsCoMS-3, Bogor, Indonesia.
Wang, L., & Jin, L. (2019). An interval type-2 fuzzy stochastic approach for regional-scale electric power system under parameter uncertainty, International Journal of Green Energy, 16(8), 627-638.1.