An Efficient Economic-Statistical Design of Simple Linear Profiles Using a Hybrid Approach of Data Envelopment Analysis, Taguchi Loss Function, and MOPSO
Subject Areas : Journal of Physical & Theoretical ChemistryMaryam Fazelimoghadam 1 , Mohammad Javad Ershadi 2 , Seyed Taghi Akhavan Niaki 3
1 - Department of Industrial Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 - Department of Information Technology, Iranian Research Institute for Information Science and Technology (IRANDOC), Tehran, Iran
3 - Department of Industrial Engineering , Sharif University of Technology, Tehran, Iran
Keywords: Economic-statistical design, Data Envelopment Analysis (DEA), Linear profiles, Quadratic loss function, MOPSO, Response Surface Methodology (RSM),
Abstract :
Statistically constrained economic design for profiles usually refers to the selection of some parameters such as the sample size, sampling interval, smoothing constant, and control limit for minimizing the total implementation cost while the designed profiles demonstrate a proper statistical performance. In this paper, the Lorenzen-Vance function is first used to model the implementation costs. Then, this function is extended by the Taguchi loss function to involve intangible costs. Next, a multi-objective particle swarm optimization (MOPSO) method is employed to optimize the extended model. The parameters of the MOPSO are tuned using response surface methodology (RSM). In addition, data envelopment analysis (DEA) is employed to find efficient solutions among all near-optimum solutions found by MOPSO. Finally, a sensitivity analysis based on the principal parameters of the cost function is applied to evaluate the impacts of changes on the main parameters. The results show that the proposed model is robust on some parameters such as the cost of detecting and repairing an assignable cause, variable cost of sampling, and fixed cost of sampling.
Azizi, R., & Kazemi Matin, R. (2018). A Ratio-Based Efficiency Measurement for Ranking Multi-Stage Production Systems in DEA. Journal of Optimization in Industrial Engineering, 11(1), 195-202.
Barzinpour, F., Noorossana, R., Niaki, S. T. A., & Ershadi, M. J. (2013). A hybrid Nelder–Mead simplex and PSO approach on economic and economic-statistical designs of MEWMA control charts. The International Journal of Advanced Manufacturing Technology, 65(9-12), 1339-1348.
Ahn, T., Charnes, A., & Cooper, W. W. (1988). Efficiency characterizations in different DEA models. Socio-Economic Planning Sciences, 22(6), 253-257.
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research, 2(6), 429-444.
Chen, Y. S., & Yang, Y. M. (2002). Economic design of x-control charts with Weibull in-control times when there are multiple assignable causes. International Journal of Production Economics, 77(1), 17-23.
Chou, C. Y., Cheng, J. C., & Lai, W. T. (2008). Economic design of variable sampling intervals EWMA charts with sampling at fixed times using genetic algorithms. Expert Systems with Applications, 34(1), 419-426.
Chou, C. Y., Liu, H. R., Huang, X. R., & Chen, C. H. (2002). Economic-statistical design of multivariate control charts using quality loss function. The International Journal of Advanced Manufacturing Technology, 20(12), 916-924.
Coello, C. A. C., Pulido, G. T., & Lechuga, M. S. (2004). Handling multiple objectives with particle swarm optimization. IEEE Transactions on evolutionary computation, 8(3), 256-279.
Costa, A. F., & Rahim, M. A. (2001). Economic design of X charts with variable parameters: the Markov chain approach. Journal of Applied Statistics, 28(7), 875-885.
Duncan, A. J. (1971). The economic design of-charts when there is a multiplicity of assignable causes. Journal of the American Statistical Association, 66(333), 107-121.
Elsayed, E. A., & Chen, A. (1994). An economic design of [xbar] control chart using quadratic loss function. The International Journal of Production Research, 32(4), 873-887.
Ershadi, M. J., Aiasi, R., & Kazemi, S. (2018). Root cause analysis in quality problem solving of research information systems: a case study. International Journal of Productivity and Quality Management, 24(2), 284-299.
Ershadi, M. J., Noorossana, R., & Niaki, S. T. A. (2016). Economic design of phase II simple linear profiles with variable sample size. Int J Prod Qual Manag, 18(4), 537-555.
Ershadi, M. J., Noorossana, R., & Niaki, S. T. A. (2016). Economic-statistical design of simple linear profiles with variable sampling interval. Journal of Applied Statistics, 43(8), 1400-1418.
Ershadi, M. J., & Omidzadeh, D. (2018). Customer Validation using Hybrid Logistic Regression and Credit Scoring Model: A Case Study. Calitatea, 19(167), 59-62.
Kang, L., & Albin, S. L. (2000). On-line monitoring when the process yields a linear profile. Journal of quality Technology, 32(4), 418-426.
Kennedy, J., & Eberhart, R. C. (1997, October). A discrete binary version of the particle swarm algorithm. In 1997 IEEE International conference on systems, man, and cybernetics. Computational cybernetics and simulation (Vol. 5, pp. 4104-4108). IEEE.
Keramatpour, M., Akhavan Niaki, S. T., & Amiri, A. (2014). Phase-II monitoring of AR (1) autocorrelated polynomial profiles. Journal of Optimization in Industrial Engineering, 7(14), 53-59.
Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. science, 220(4598), 671-680.
Linderman, K. W. (1999). Economic design of multivariate exponentially weighted moving average (MEWMA) control charts.
Liu, J., Tan, C., & Zeng, C. (2017). Parameter optimization for a modified MEWMA control chart based on a PSO algorithm. Communications in Statistics-Simulation and Computation, 46(5), 4140-4153.
Lorenzen, T. J., & Vance, L. C. (1986). The economic design of control charts: a unified approach. Technometrics, 28(1), 3-10.
Mestek, O., Pavlík, J., & Suchánek, M. (1994). Multivariate control charts: control charts for calibration curves. Fresenius' journal of analytical chemistry, 350(6), 344-351.
Molnau, W. E., Montgomery, D. C., & Runger, G. C. (2001). Statistically constrained economic design of the multivariate exponentially weighted moving average control chart. Quality and Reliability Engineering International, 17(1), 39-49.
Montgomery, D.C. (2005). Design and analysis of experiments. 6th ed. John Wiley & Sons, Inc., New York.
Niaki, S. T. A., Malaki, M., & Ershadi, M. J. (2011). A particle swarm optimization approach on economic and economic-statistical designs of MEWMA control charts. Scientia Iranica, 18(6), 1529-1536.
Niaki, S. T. A., & Ershadi, M. J. (2012). A hybrid ant colony, Markov chain, and experimental design approach for statistically constrained economic design of MEWMA control charts. Expert Systems with Applications, 39(3), 3265-3275.
Niaki, S. T. A., & Ershadi, M. J. (2012). A parameter-tuned genetic algorithm for statistically constrained economic design of multivariate CUSUM control charts: a Taguchi loss approach. International Journal of Systems Science, 43(12), 2275-2287.
Niaki, S. T. A., Malaki, M., & Ershadi, M. J. (2011). A comparative study of four evolutionary algorithms for economic and economic-statistical designs of MEWMA control charts. Journal of Optimization in Industrial Engineering, (9), 1-13.
Noorossana, R., Niaki, S. T. A., & Ershadi, M. J. (2014). Economic and economic‐statistical designs of phase II profile monitoring. Quality and Reliability Engineering International, 30(5), 645-655.
Sadigh, A. N., Mokhtari, H., Iranpoor, M., & Ghomi, S. M. T. (2012). Cardinality constrained portfolio optimization using a hybrid approach based on particle swarm optimization and Hopfield neural network. Advanced Science Letters, 17(1), 11-20.
Sadigh, A. N., Mozafari, M., & Kashan, A. H. (2010). A mixed integer linear program and tabu search approach for the complementary edge covering problem. Advances in Engineering Software, 41(5), 762-768.
Safaei, A. S., Kazemzadeh, R. B., & Niaki, S. T. A. (2012). Multi-objective economic statistical design of X-bar control chart considering Taguchi loss function. The International Journal of Advanced Manufacturing Technology, 59(9-12), 1091-1101.
Saghaei, A., Fatemi Ghomi, S. M. T., & Jaberi, S. (2014). Economic design of exponentially weighted moving average control chart based on measurement error using genetic algorithm. Quality and Reliability Engineering International, 30(8), 1153-1163.
Saniga, E. M. (1989). Economic statistical control-chart designs with an application to and R charts. Technometrics, 31(3), 313-320.
Serel, D. A. (2009). Economic design of EWMA control charts based on loss function. Mathematical and Computer Modelling, 49(3-4), 745-759.
Serel, D. A., & Moskowitz, H. (2008). Joint economic design of EWMA control charts for mean and variance. European Journal of Operational Research, 184(1), 157-168.
Taguchi, G., & Wu, Y. (1979). Introduction to off-line quality control. Central Japan Quality Control Assoc..
Tavana, M., Li, Z., Mobin, M., Komaki, M., & Teymourian, E. (2016). Multi-objective control chart design optimization using NSGA-III and MOPSO enhanced with DEA and TOPSIS. Expert Systems with Applications, 50, 17-39.
Walker, E., & Wright, S. P. (2002). Comparing curves using additive models. Journal of Quality Technology, 34(1), 118-129.
Yaghoubi, A., Amiri, M., & Safi Samghabadi, A. (2016). A New Dynamic Random Fuzzy DEA Model to Predict Performance of Decision Making Units. Journal of Optimization in Industrial Engineering, 9(20), 75-90.
Yang, W. A., Guo, Y., & Liao, W. (2012). Economic and statistical design of and S control charts using an improved multi-objective particle swarm optimisation algorithm. International Journal of Production Research, 50(1), 97-117.