Volumetric properties of {n-butyl acetate + 1-butanol + 1,2- butanediol} at temperature between [298.15 ,303.15 and 308.15] K.
Subject Areas : Journal of the Iranian Chemical ResearchSaleh Bagheri 1 * , Mahdi Rakhshi 2 , Mahdi Rezaei Sameti 3
1 - Department of Physical and Theoretical Chemistry , Faculty of Chemistry, Islamic Azad University,
Tehran North Branch, Tehran, Iran
2 - Faculty of Chemistry, University of Bu Ali Sina, Hamadan, Iran
3 - Department of Chemistry, Faculty of Science, Malayer University, Malayer, Iran
Keywords: Excess molar volume, n-butylacetate, 1-butanol, 1, 2-butanediol, Molecular interactions,
Abstract :
Densities and excess molar volume of the binary and ternary mixtures formed by nbutylacetate+ 1-butanol + 1,2-butanediol were measured at (298.15, 303.15, and 308.15) K forthe liquid region and at ambient pressure (81.5) k Pa , for the whole composition range. Theexcess molar volumes,VmE and excess partial molar volume ViE ,were calculated fromexperimental densities.The excess molar volumes are positive over the mole fraction rage forbinary mixtures of n-butylacetate (1) + 1-butanol (2) and n-butylacetate (2) + 1,2-butanediol (3)and increase with increasing temperatures from (298.15 to 308.15)K. The excess molar volumesof 1-butanol (1) + 1,2-butanediol (3) are negative and decrease with increasing temperaturesfrom (298.15 to 308.15)K..The experimental data of constitute were correlated as a function ofthe mole fraction by using the Redlich–Kister equation for binary and , Cibulka, Jasinski andMalanowski , Singe et al, Pintos et al , Calvo et al, Kohler, and Jacob - Fitzner for ternarymixture ,respectively. The experimental data of the constitute binaries are analyzed to discuss thenature and strength of intermolecular interactions in these mixtures.
[1] H. Iloukhani, M. Rakhshi, J. Mol. Liq. 149 (2009) 86-95.
[2] M. Rezaei Sameti, H. Iloukhani, M. Rakhshi, J. Mol. Liq. 149(2009 ) 96-100.
[3] H. Iloukhani, M. Rezaei Sameti, J. Chem. Thermodyn. 37 (2005) 1151-1161.
[4] M. Rezaei Sameti, H. Iloukhani, M. Rakhshi, Rus. J. Phy.Chem A. 84 (2010 ) 2023-2032.
[5] E. Alvarez, B. Sanjurjo, A.Cancela, J. M. Navaza, Eng. Res. Des. 78 (2000) 889-893.
[6] S. Kumar, K. Kusakabe, L.S. Fan, AIChE J 39 (1993) 1399-1405.
[7] W.E. Acree, Academic Press, New York, 1984.
[8] C.C. Tsao, J.M. Smith, Chem. Eng. Prog. Symp. Ser. 7 (1953) 107-121.
[9] K.T. Jacob, K. Fitzner, Thermochem. Acta 18 (1977) 197-206.
[10] R. Rastogi, J. Nath, S.S. Das, J. Chem. Eng. Data 22 (1977) 249-252.
[11] A. Radojkovic, D. Tasic, B. Grozdanic, B. Djorjevic, M. Malic, J. Chem. Thermodyn. 9 (1977) 349-
356.
[12] D.T. Wu, Fluid Phase Equilib. 30 (1986) 149-156.
[13] W. Cao, W. Knudsen, A. Fredenslund, P. Rasmussen, Ind. Eng. Chem. Res. 32 (1993) 2088-2092.
[14] W. Cao, A. Fredenslund, P. Rasmussen, Ind. Eng. Chem. Res. 31 (1992) 2603-2619.
[15] W. Cao, K. Knudsen, A. Fredenslund, P. Rasmussen, Ind. Eng. Chem. Res. 32 (1993) 2077-2087.
[16] O. Redlich, A.T. Kister, Ind. Eng. Chem. 40 (1948) 345-348.
[17] M. Domiınguez, I. Gascon, A. Valen, F.M. Royo, J.S. Urieta, J. Chem. Thermodyn. 32 (2000) 1551-
1568.
[18] J.A. Riddick, W.B. Bunger, Organic Solvents, third ed., Wiley, New York, 1970.
[19] A. Mariano, M. Postigo, D. Gonzalez-Salgado, L. Romanı, J. Chem. Thermodyn. 39 (2007) 218-224.
[20] K. Sivakumar, P.R. Naidu, Fluid Phase Equilibr. 127 (1997) 173-180.
[21] G. Chandrasekhar, P. Venkatesu, M.V.P. Rao, J. Chem. Eng. Data 45 (2000) 590-593.
[22] A.K. Nain, J. Solution Chem. 36 (2007) 497-516.
[23] B. Hawrylak, K. Gracie, R. Palepu, J. Solution Chem. 27 (1998) 17-31.
[24] H.A. Zarei, J. Mol. Liq. 124 (2006) 23-31.
[25] H. Iloukhani, R. Ghorbani, J. Solution Chem. 27 (1998) 141-149.
[26] A.S. Al-Jimaz, J.A. Al-Kandary, A.H.M. Abdul-Latif, Fluid Phase Equilib 218 (2004) 247-260.
[27] P.S. Ramesh, P.S. Chandreshwar, J.C. Das, P. Ghosh, J. Chem. Eng. Data. 35 (1990) 93-97.
[28] F. Corradini, A. Marchetti, M. Tagliazucchi, L. Tassi, G. Tosi, Aust. J. Chem. 47 (1994) 1117-1126.