Simultaneous spectrophotometric determination of lead, copper and nickel using xylenol orange by partial least squares
Subject Areas : Journal of the Iranian Chemical ResearchJahan B. Ghasemi 1 , Samira Kariminia 2
1 - Chemistry Department, Faculty of Sciences, K.N. Toosi University of Technology, Tehran, Iran
2 - Chemistry Department, Faculty of Sciences, Razi University, Kermanshah, Iran
Keywords: Copper, Lead, Nickel, PLS, Simultaneous determination,
Abstract :
A partial least squares (PLS) calibration model was developed for the simultaneous spectrophotometricdetermination of Pb (ΙΙ), Cu (ΙΙ) and Ni (ΙΙ) using xylenol orange as a chromogenic reagent. The parameterscontrolling behavior of the system were investigated and optimum conditions were selected. The calibrationgraphs were linear in the ranges of 0.0–9.091, 0.0–2.719 and 0.0–2.381 ppm for lead, copper and nickel,respectively. The experimental calibration matrix was designed with 21 mixtures of these chemicals.Absorbance data were taken between 350-650 nm and absorbance data were autoscaled. A set of syntheticsample mixtures were used to validate the proposed method. The root mean square errors of predictions(RMSEPs) and percent of relative prediction errors (RSEPs) are 0.2164, 0.0744, 0.0735 ppm and ±7.1855, ±6.3193, ± 7.0806% for lead, copper and nickel, respectively.
[1] Yongnian Ni, Ling Jin, Chemom. Intell. Lab. Sys. 45 (1999) 105-111.
Type of water Added (ppm) Found (ppm) Recovery %
Pb Cu Ni Pb Cu Ni Pb Cu Ni
Tap water 2.40 1.40 0.53 2.34 1.45 0.51 97.5 103.6 96.2
Taq-e-bostan(Frontal) 3.75 1.20 0.37 3.70 1.22 0.36 98.7 101.6 97.3
3.45 0.97 0.61 3.60 0.96 0.60 104.3 99.0 98.3
Table 5. /PLS results applied on the real matrix samples (ppm)
J.B. Ghasemi & S. Kariminia, J. Iranian Chem. Res. 5 (4) (2012) 213-221
221
[2] M. Ghaedi, F. Ahmadi, A. Shokrollahi, J. Hazard. Mat. 142 (2007) 272-278.
[3] P.N. Nesterenko, G.Z. Amirova, T.A. Bol’shova, Anal. Chim. Acta. 285 (1994) 161-168.
[4] N. Ryan, J.D. Glennon, D. Muller, Anal. Chim. Acta. 283(1993) 344-349.
[5] B.L. Batista, J.L. Rodrigues, J.A. Nunes, L. Tormen, A.J. Curtius, F. Barbosa Jr, Talanta. 76 (2008) 575-
579.
[6] A.R. Coscione a, J.C. de Andrade, R.J. Poppi, C.Mello, B.v. Raij, M.F. de Abreu, Anal. Chim. Acta. 423
(2000) 31-40.
[7] C.F. Monica, A. Ferrraro, M. Patricia, A. Castellano, S. Teodoro, A.B. Kaufman, J. Pharm. Biomed.
Anal. 26 (2001) 443-451.
[8] A. Safavi, H. Abdollahi, Anal. Lett. 34 (2001) 2817-2827.
[9] A. Safavi, M. Mirzaee, H. Abdollahi, Anal. Lett. 36 (2003) 699-712.
[10] H. Martens, T. Naes, Multivariate Calibration, John Wiley, New York. 1991.
[11] A. Lorber, L.E. Wangen, B.R. Kowalski, J. Chemom. 1 (1987) 19-31.
[12] R. Marbach, H.M. Heise, Chemom. Intell. Lab. Syst. 9 (1990) 45-63.
[13] J.H. Kalivas, J. Chemom. 13 (1999) 111-132.
[14] J.H. Kalivas, Chemom. Intell. Lab. Syst. 45 (1999) 215-225.
[15] A. Hoskuldsson, J. Chemom. 2 (1988) 211-228.
[16] J.H. Kalivas, Anal. Chim. Acta. 428 (2001) 31-40.
[17] R.C. Weast, CRC Handbook of Chemistry and Physics, 1th Ed. © CRC Press, Inc. 1988.
[18] J.A. Cornel, Experiments with Mixtures, John Wiley, New York. 1981.
[19] D.M. Haaland, E.V. Thomas, Anal. Chem. 60 (1988) 1193-1202.