Optical and Dielectric studies in zirconium(IV) tungstate nanoparticles prepared by chemical coprecipitation method
Subject Areas : Journal of the Iranian Chemical ResearchBeena Bhaskaran 1 , Manoj Sadanandan, 2
1 - Department of Chemistry, D. B College, Sasthamcotta, Kollam, Kerala, India
2 - Department of Chemistry, D. B College, Sasthamcotta, Kollam, Kerala, India
Keywords: Zirconiun(IV)tungstate, AFM, Optical band gap, ac conductivity, dielectric constant,
Abstract :
Nanoparticles of zirconium(IV) tungstate are prepared by chemical co-precipitation method. Thecharacterizations have been carried out by TG/DTA, DSC, AFM, XRD, FTIR and UV-Vis spectrum. PLspectrum shows two emission bands at 350 nm and at 477 nm. The effects of frequency on the dielectricbehavior and ac electrical conductivity have been studied. The dielectric constant is found to be 119.43 at1MHz. The ac conductivity is 7.29x10-8S/cm.
[1] Monika Gupta, Vidhika Sharma, Jaya Shrivastava, Anjana Solanki, A.P.Singh, V.R.Satsangi, S. Dass and
Rohit Shrivastav, Bull.Mater.Sci., 32 (2009) 23-30.
M. Sadanandan & B. Bhaskaran, J. Iranian Chem. Res. 5 (2) (2012) 109-118
118
[2] T.S Sreeprasad, A.K Samal and T.Pradeep, Bull.Mater.Sci., 31 (2008) 219-224.
[3] A.Patra, K Rajesh and T.P.Radhakrishnan, Bull.Mater.Sci., 31 (2008) 421-427.
[4] Huazhi Wang, Xinli Kou, Jie Zhang and Jiangong Li, Bull.Mater.Sci., 31(2008) 97-100.
[5] H.T Zhang and X.H Chen, Nanotechnology, 17 (2006) 1384-1390.
[6] M.Nidhin, R.Indumathy, K.J Sreeram and Balachandran Unni Nair, Bull.Mater.Sci., 31(2008) 93-96.
[7] Asok K.Ganguly, Sonalika Vaidya and Tokeer Ahmad, Bull.Mater.Sci., 31 (2008) 415-419.
[8] S.K Saha, Bull.Mater.Sci., 31 (2008) 473-479.
[9] Beena Pandit and Uma Chudasama, Bull.Mater.Sci.,24 (2001) 265-271.
[10] Rakesh Thakkar, Heemanshu Patel and Uma Chudasama, Bull.Mater.Sci., 30 (2007) 205-209 .
[11] Manoj S and Beena B, J.Nano- Electron Phys., 3(2011) 179-184.
[12] Harol P Klug and Leroy E Alexander, X-ray Powder Diffraction Procedure, (John Wiley and Sons, New
York), 1954.
[13] Katabathini Narasimha Rao, Adapa Sridhar, Adam F. Lee, Stewart J Taveneer, Nigel A. Young and
Karen Wilson, Green Chem. 8 (2006) 790-797.
[14] Xuanyong Liu, Anping Huang, Chuanxian Ding and Paul K Chu, Biomaterials, 27 (2006) 3904-3911.
[15] M.A Cortes-Jacome, J.A.Toledo, C.Angeles-Chavez, M.A.Guilar and J.A.Wang, J.Phys.Chem.B, 109
(2005) 22730-22739.
[16] S.C Singh, R.K Swarnkar and R. Gopal, Bull.Mater.Sci., 33 (2010) 21-26
[17] F. Urbach, Phys.Rev. 92 (1953) 1324-1324.
[18] M. Madani, Bull.Mater.Sci. 33 (2010) 65-73.
[19] B.Pandey, P.P Pal, J Mukherjee, B. Das and A.K Kar, Nanostructured Materials for Electronics, Energy
and Environmental Applications, (Macmillan, New Delhi) 2010.
[20] S.K Nandi, S. Chakraborty, M.K Bera and C.K Maiti, Bull.Mater.Sci., 30 (2007) 247-254.
[21] D.G Thomas and J.J Hopfield, Phys.Rev. 128 (1962) 2135-2148.
[22] P.K Gosh, M.K Mitra and K.K Chattopadhyay, Nanotechnology, 16 (2005) 107-112.
[23] Nisha J.Tharayil, R Raveendran, Alexander Varghese Vaidyan and P.G.Chithra, Indian
J.Eng.Mater.Sci., 15 (2008) 489-496.
[24] S.R Elliot, Philos.Mag., 36 (1977) 1291-1296.
[25] K.V Rao and A.Smakula, J.App.Phys., 37 (1966) 319-323.
[26] Xiuli Fu, Huilin Ge, Qin gkai Xing and Zhijian Peng, Mater. Sci. and Eng. B, 176 (2011) 926-931.
[27] Alo Dutta, Chandrahas Bharti and T P Sinha, Indian J.Eng.Mater.Sci.,15 (2008) 181-186.