بررسی و بهینه سازی پارامترهای فرآیند تولید سوخت زیستی بیودیزل از روغن پسماند خوراکی به روش سطح پاسخ
محورهای موضوعی : انرژی های تجدید پذیراحمد عباس زاده مایوان 1 , عباس رضایی اصل 2 , احمد تقی زاده علی سرایی 3
1 - استادیار گروه مهندسی مکانیک بیوسیستم، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران. *(مسوول مکاتبات)
2 - دانشیار گروه مهندسی مکانیک بیوسیستم، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.
3 - دانشیار گروه مهندسی مکانیک بیوسیستم، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.
کلید واژه: بیودیزل, روغن پسماند خوراکی, روش سطح پاسخ, بهینه سازی, ویژگی¬های سوخت.,
چکیده مقاله :
24/54 منجر به بیشترین بازده تولید بیودیزل (62/98%) خواهد شد.
بحث و نتیجه گیری: با توجه به تعادلی بودن واکنش ترانساستریفیکاسیون و تبخیر متانول از محیط واکنش، روند بازده بیودیزل تولیدی ابتدا افزایشی و در ادامه بهصورت کاهشی مشاهده شد. لذا یافتن شرایط بهینه واکنش تاثیر بهسزایی در رسیدن به بازده بیشتر خواهد داشت. همچنین تفاوت قابل توجهی بین ویژگیهای بیودیزل تولید شده از روغنهای پسماند و تازه مشاهده نگردید و تنها فرآیندهای پیش فرآوری، جداسازی گلیسرین و خالصسازی با چالشهای فنی و اقتصادی بیشتری همراه میشود.
Background and Objective: Nowadays, due to environmental concerns and energy crises, the use of biofuel resources such as biodiesel has become very important. Therefore, the main goal of the current study is to investigate, model and, find the optimal conditions for the biodiesel production process from waste cooking oils using the response surface method.
Material and Methodology: RSM based on Box-Behnken was applied to investigate, model and, optimize the influence of reaction parameters, such as methanol to oil ratio (3:1–9:1 m/m), catalyst concentration (1–2 w/w%), and reaction temperature (45–55 ), on biodiesel yield from waste cooking oil (WCO). According to the DOE, all 17 runs were performed after applying the same reaction conditions (mixing 600 rpm and reaction time 75 min) and the biodiesel yield was considered as a response.
Findings: Based on the modeling results, the coefficient of determination, standard error and, coefficient of variation (C.V) of the regression model was 97.40%, 0.827 and 0.882%, respectively. The ANOVA results showed that all selected parameters of oil-methanol ratio, catalyst concentration and, reaction temperature had a significant effect on biodiesel yield. The results of the optimization process showed that the optimal conditions of independent variables including oil-methanol ratio, catalyst concentration and reaction temperature of 1: 6.23 (m/m), 1.63% (w/w) and, 54.24 ℃, respectively, led to the highest biodiesel yield (98.62%).
Discussion and conclusion: Considering the equilibrium nature of the transesterification reaction and methanol evaporation from the reactor, the biodiesel yields first increased and then decreased. Therefore, finding the optimal reaction conditions will have a significant impact on achieving a higher yield. Also, no significant difference was observed between the characteristics of biodiesel produced from WCO and fresh oils, and only the pre-processing processes of WCO and glycerin separation and purification will be associated with more technical and economic challenges.
1. Abbaszaadeh A, Ghobadian B, Omidkhah MR, Najafi G. Current biodiesel production technologies: A comparative review. Energy Convers Manag 2012;63:138–48. https://doi.org/10.1016/j.enconman.2012.02.027.
2. Darwin, Thifal M, Alwi M, Murizal Z, Pratama A, Rizal M. The synthesis of biodiesel from palm oil and waste cooking oil via electrolysis by various electrodes. Case Stud Chem Environ Eng 2023;8:100512. https://doi.org/10.1016/j.cscee.2023.100512.
3. Tarigan JB, Ginting B, Perangin-angin S, Sari RN, Sianipar PF, Sitepu EK. Homogenizer-intensified amidation of free fatty acids in waste cooking oil for biodiesel production. South African J Chem Eng 2023;46:271–6. https://doi.org/10.1016/j.sajce.2023.08.011.
4. Abbaszadeh-Mayvan A, Ghobadian B, Najafi G, Yusaf T. Intensification of continuous biodiesel production from waste cooking oils using shockwave power reactor: Process evaluation and optimization through response surface methodology (RSM). Energies 2018;11. https://doi.org/10.3390/en11102845.
5. No S-Y. Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review. Renew Sustain Energy Rev 2011;15:131–49. https://doi.org/10.1016/j.rser.2010.08.012.
6. Mazubert A, Poux M, Aubin J. Intensified processes for FAME production from waste cooking oil: A technological review. Chem Eng J 2013;233:201–23. https://doi.org/10.1016/j.cej.2013.07.063.
7. Innocenzi V, Prisciandaro M. Technical feasibility of biodiesel production from virgin oil and waste cooking oil: Comparison between traditional and innovative process based on hydrodynamic cavitation. Waste Manag 2021;122:15–25. https://doi.org/10.1016/j.wasman.2020.12.034.
8. Demirbas A. Biodiesel- A Realistic fuel alternative for diesel emgines. Springer; n.d.
9. Sahar, Sadaf S, Iqbal J, Ullah I, Bhatti HN, Nouren S, et al. Biodiesel production from waste cooking oil: An efficient technique to convert waste into biodiesel. Sustain Cities Soc 2018;41:220–6. https://doi.org/10.1016/j.scs.2018.05.037.
10. Chakraborty R, Sahu H. Intensification of biodiesel production from waste goat tallow using infrared radiation: Process evaluation through response surface methodology and artificial neural network. Appl Energy 2014;114:827–36. https://doi.org/10.1016/j.apenergy.2013.04.025.
11. Miyuranga KAV, Arachchige USPR, Jayasinghe RA, Samarakoon G. Purification of Residual Glycerol from Biodiesel Production as a Value-Added Raw Material for Glycerolysis of Free Fatty Acids in Waste Cooking Oil. Energies 2022;15. https://doi.org/10.3390/en15238856.
12. Atadashi IM, Aroua MK, Aziz AA. Biodiesel separation and purification: A review. Renew Energy 2011;36:437–43. https://doi.org/10.1016/j.renene.2010.07.019.
13. Chozhavendhan S, Vijay Pradhap Singh M, Fransila B, Praveen Kumar R, Karthiga Devi G. A review on influencing parameters of biodiesel production and purification processes. Curr Res Green Sustain Chem 2020;1–2:1–6. https://doi.org/10.1016/j.crgsc.2020.04.002.
14. Mohiddin MN Bin, Tan YH, Seow YX, Kansedo J, Mubarak NM, Abdullah MO, et al. Evaluation on feedstock, technologies, catalyst and reactor for sustainable biodiesel production: A review. J Ind Eng Chem 2021;98:60–81. https://doi.org/10.1016/j.jiec.2021.03.036.
15. Mani S, Kosuru Y, Delhiwala Y, Koorla PB, Mekala M. Green Technologies and Sustainability A review on the biodiesel production : Selection of catalyst , Pre-treatment , Post treatment methods. Green Technol Sustain 2024;2:100061. https://doi.org/10.1016/j.grets.2023.100061.
16. Maheshwari P, Haider MB, Yusuf M, Klemeš JJ, Bokhari A, Beg M, et al. A review on latest trends in cleaner biodiesel production: Role of feedstock, production methods, and catalysts. J Clean Prod 2022;355. https://doi.org/10.1016/j.jclepro.2022.131588.
17. Van Gerpen J. Biodiesel processing and production. Fuel Process Technol 2005;86:1097–107. https://doi.org/10.1016/J.FUPROC.2004.11.005.
18. Musa IA. The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process. Egypt J Pet 2016;25:21–31. https://doi.org/10.1016/j.ejpe.2015.06.007.
19. Günay ME, Türker L, Tapan NA. Significant parameters and technological advancements in biodiesel production systems. Fuel 2019;250:27–41. https://doi.org/10.1016/j.fuel.2019.03.147.
20. Verma P, Sharma MP. Review of process parameters for biodiesel production from different feedstocks. Renew Sustain Energy Rev 2016;62:1063–71. https://doi.org/10.1016/j.rser.2016.04.054.
21. Harreh D, Saleh AA, Reddy ANR, Hamdan S. An Experimental Investigation of Karanja Biodiesel Production in Sarawak, Malaysia. J Eng (United Kingdom) 2018;2018. https://doi.org/10.1155/2018/4174205.
22. OA A, AO A, SE A. Process Parameter Estimation of Biodiesel Production from Waste Frying Oil (Vegetable and Palm oil) using Homogeneous Catalyst. J Food Process Technol 2019;10:1–10. https://doi.org/10.35248/2157-7110.19.10.811.
23. Khoobbakht G, Karimi M. Analysis of the Parameters Affecting on the Performance and Energy Efficiency of Biodiesel Production from Waste Oil. J Environ Sci Technol 2020;22.
24. Metcalfe LD, Schmitz AA, Pelka JR. Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Anal Chem 1966;38:514–5.
25. Bashir MA, Wu S, Zhu J, Krosuri A, Khan MU, Ndeddy Aka RJ. Recent development of advanced processing technologies for biodiesel production: A critical review. Fuel Process Technol 2022;227:107120. https://doi.org/10.1016/j.fuproc.2021.107120.
26. Birla A, Singh B, Upadhyay SN, Sharma YC. Kinetics studies of synthesis of biodiesel from waste frying oil using a heterogeneous catalyst derived from snail shell. Bioresour Technol 2012;106:95–100. https://doi.org/10.1016/j.biortech.2011.11.065.
27. Foroutan R, Mohammadi R, Esmaeili H, Mirzaee F, Tamjidi S. Transesterification of waste edible oils to biodiesel using calcium oxide @ magnesium oxide nanocatalyst. Waste Manag 2020;105:373–83. https://doi.org/10.1016/j.wasman.2020.02.032.
28. Se K, Honarvar B, Esmaeili H, Esfandiari N. Enhanced biodiesel production from chicken fat using CaO/CuFe2O4 nanocatalyst and its combination with diesel to improve fuel properties. Fuel 2019;235:1238–44. https://doi.org/10.1016/j.fuel.2018.08.118.
29. Abbah EC, Nwandikom GI, Egwuonwu CC, Nwakuba NR. Effect of Reaction Temperature on the Yield of Biodiesel From Neem Seed Oil. Am J Energy Sci 2016;3:16–20.
30. Jiang W, Lu H fang, Qi T, Yan S li, Liang B. Preparation, application, and optimization of Zn/Al complex oxides for biodiesel production under sub-critical conditions. Biotechnol Adv 2010;28:620–7. https://doi.org/10.1016/j.biotechadv.2010.05.011.
31. Istiningrum RB, Aprianto T, Pamungkas FLU. Effect of reaction temperature on biodiesel production from waste cooking oil using lipase as biocatalyst. AIP Conf Proc 2017;1911. https://doi.org/10.1063/1.5016024.
32. Nwufo OC. Effect of temperature on the biodiesel yield from Nigerian physic nut, castor bean, dika nut and sandbox seed oils. Int J Ambient Energy 2016;37:16–9. https://doi.org/10.1080/01430750.2013.866908.
33. Syazwani ON, Teo SH, Islam A, Taufiq-Yap YH. Transesterification activity and characterization of natural CaO derived from waste venus clam (Tapes belcheri S.) material for enhancement of biodiesel production. vol. 105. 2017. https://doi.org/10.1016/j.psep.2016.11.011.
34. Komers K, Skopal F, Stloukal R, Machek J. Kinetics and mechanism of the KOH - Catalyzed methanolysis of rapeseed oil for biodiesel production. Eur J Lipid Sci Technol 2002;104:728–37. https://doi.org/10.1002/1438-9312(200211)104:11<728::AID-EJLT728>3.0.CO;2-J.
35. Muthukumaran C, Praniesh R, Navamani P, Swathi R, Sharmila G, Manoj Kumar N. Process optimization and kinetic modeling of biodiesel production using non-edible Madhuca indica oil. Fuel 2017;195:217–25. https://doi.org/10.1016/j.fuel.2017.01.060.
36. Charoenchaitrakool M, Thienmethangkoon J. Statistical optimization for biodiesel production from waste frying oil through two-step catalyzed process. Fuel Process Technol 2011;92:112–8. https://doi.org/10.1016/j.fuproc.2010.09.012.
37. Ramadhas AS, Jayaraj S, Muraleedharan C. Biodiesel production from high FFA rubber seed oil. Fuel 2005;84:335–40. https://doi.org/10.1016/j.fuel.2004.09.016.
38. Mihaela P, Josef R, Monica N, Rudolf Z. Perspectives of safflower oil as biodiesel source for South Eastern Europe (comparative study: Safflower, soybean and rapeseed). Fuel 2013;111:114–9. https://doi.org/10.1016/j.fuel.2013.04.012.
39. Moser BR, Vaughn SF. Evaluation of alkyl esters from Camelina sativa oil as biodiesel and as blend components in ultra low-sulfur diesel fuel. Bioresour Technol 2010;101:646–53. https://doi.org/10.1016/j.biortech.2009.08.054.
40. Sarin R, Sharma M, Sinharay S, Malhotra RK. Jatropha-Palm biodiesel blends: An optimum mix for Asia. Fuel 2007;86:1365–71. https://doi.org/10.1016/j.fuel.2006.11.040.
41. Atabani AE, Mahlia TMI, Masjuki HH, Badruddin IA, Yussof HW, Chong WT, et al. A comparative evaluation of physical and chemical properties of biodiesel synthesized from edible and non-edible oils and study on the effect of biodiesel blending. Energy 2013;58:296–304. https://doi.org/10.1016/j.energy.2013.05.040.
42. Abollé A, Loukou K, Henri P. The density and cloud point of diesel oil mixtures with the straight vegetable oils (SVO): Palm, cabbage palm, cotton, groundnut, copra and sunflower. Biomass and Bioenergy 2009;33:1653–9. https://doi.org/10.1016/j.biombioe.2009.08.008.
43. Singh SP, Singh D. Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renew Sustain Energy Rev 2010;14:200–16. https://doi.org/10.1016/j.rser.2009.07.017.
44. Ikwuagwu OE, Ononogbu IC, Njoku OU. Production of biodiesel using rubber (Hevea brasiliensis (Kunth. Muell.)) seed oil. Ind Crops Prod 2000;12:57–62. https://doi.org/10.1016/S0926-6690(99)00068-0.
45. Younis KA, Gardy JL, Barzinji KS. Production and characterization of biodiesel from locally sourced sesame seed oil , used cooking oil and other commercial vegetable oils in Erbil-Iraqi Kurdistan. Energy Reports 2014;2:105–11. https://doi.org/10.11648/j.ajac.20140206.12.
46. Ozsezen AN, Canakci M. The emission analysis of an IDI diesel engine fueled with methyl ester of waste frying palm oil and its blends. Biomass and Bioenergy 2010;34:1870–8. https://doi.org/10.1016/j.biombioe.2010.07.024.
47. Atmanli A. Comparative analyses of diesel-waste oil biodiesel and propanol, n-butanol or 1-pentanol blends in a diesel engine. Fuel 2016;176:209–15. https://doi.org/10.1016/j.fuel.2016.02.076.
48. Enweremadu CC, Rutto HL. Combustion, emission and engine performance characteristics of used cooking oil biodiesel - A review. Renew Sustain Energy Rev 2010;14:2863–73. https://doi.org/10.1016/j.rser.2010.07.036.