بررسی نقش پوشش فضای سبز شهری بر روند تغییرات دمای سطح محیط های شهری (مطالعه موردی: شهر ساری)
محورهای موضوعی :
شهرهای پایدار
کمیل عبدی
1
,
سعید کامیابی
2
*
,
محمدرضا زندمقدم
3
1 - دانش آموخته دکتری گروه جغرافیا و برنامه ریزی شهری، واحد سمنان، دانشگاه آزاد اسلامی، سمنان، ایران.
2 - دانشیار گروه جغرافیا، واحد سمنان، دانشگاه آزاد اسلامی، سمنان، ایران. (مسوول مکاتبات)
3 - استادیار گروه جغرافیا، واحد سمنان، دانشگاه آزاد اسلامی، سمنان، ایران.
تاریخ دریافت : 1397/06/18
تاریخ پذیرش : 1397/11/15
تاریخ انتشار : 1400/02/01
کلید واژه:
پوشش سبز شهری,
جزایر حرارتی,
سنجنده لندست,
ساری,
چکیده مقاله :
زمینه و هدف: از جمله روش های نوین محاسبه جزیره حرارتی شهری و نقش کاربری های مختلف، استفاده از علم سنجشازدور و تصاویر ماهواره ای است که با استفاده از تشعشع مادونقرمز حرارتی و کاربرد مدلهای فیزیکی جهت محاسبه مقدار دمای سطح زمین در نواحی وسیعی انجام می گیرد، لذا پژوهش حاضر با هدف بررسی الگوی پراکنش دمای سطحی زمین و رابطه آن با ویژگی های خرده اقلیم فضای سبز شهری و پوشش گیاهی در محدوده چهار گانه (مناطق 1،2،3 و منطقه مرکزی )شهزک ر ساری به بررسی و مقایسه تغییرات حرارتی می پردازد.روش بررسی: برای به دست آوردن جزایر حرارتی شهر از محاسبه رادیانس، ضریب انعکاس و دمای درخشندگی تصاویر در محیط ENVI و تحلیل و پردازش نرم افزار GIS استفاده شده است. داده های مورد استفاده شامل تصاویر ماهوارهای TIRS,OLIسنجنده لندست 7 و 8 درسه برهه زمانی 2009، 2013 و 2017 می باشدیافته ها:نتایج حاصل از پردازش تصاویر ماهوارهای نشان داده است که 45 هکتار از پوشش سبز شهری در مدت 8 سال تغییر کاربری داده شده است.همچنین بر مبنای محاسبه دمای سطح زمین در طول دوره آماری در وضعیت کمینه و بیشینه طی سالهای 2009 تا 2017 روند صعودی داشته که این افزایش دمایی در مناطقی از شهر که از فضای سبز بیشتری برخوردار بوده کمتر دیده شده است.بحث و نتیجه گیری:نتایج حاکی از آن است که منطقه مرکزی شهر که از لحاظ پوشش و پراکندگی فضای سبز نسبت به دیگر مناطق شهر نامناسبتر است؛ گرمتر می باشد.مکان یابی مناسب جهت احداث فضاهای سبز شهری در این مناطق در سال های آینده می تواند نقش تعدیل کننده ای در دمای سطح شهر ایفا نماید.
چکیده انگلیسی:
Background and Objective: One of the new methods to calculate the urban heat island and the role of different usages are the science of remote-sensing and satellite images, which are performed using thermal infrared radiation and applying the physical models to calculate the earth’s surface temperature in large areas. Therefore, we involved in a study in this field in the present research aiming at investigating the heat islands and at comparing the thermal degree and the percentage of green space existing in four areas of Sari city.Method: Radians calculation, reflection coefficient, and images’ radiance temperature in ENVI environment and GIS software processing and analysis were used in order to obtain the heat islands of the city. The used data included the satellite images of TIRS, OLI, and Landsat Sensor 7 and 8 in three time intervals of 2009, 2013, and 2017.Findings: The results of satellite images processing have shown that 45 hectares of urban green vegetation has incurred usage change within 8 years. Also, the earth surface temperature during the statistical period in the minimum and maximum positions during the years 2009 to 2017 has had an increasing trend based on the calculation and this rise in temperature was seen less in areas of the city with more green space.Discussion and Conclusion: the results show that the city’s central region, which is less suitable in terms of vegetation and dispersion of green space in comparison with other regions of the city, is warmer. A proper locating to establish urban green spaces in these areas in the coming years can play a moderating role in the city’s surface temperature.
منابع و مأخذ:
He, C., Zhao, Y., Huang, Q., Zhang, Q., & Zhang, D. (2015). Alternative future analysis for assessing the potential impact of climate change on urban landscape dynamics. Science of The Total Environment, 532, 48-60.
Poor Ahmad, Ahmad; Ahmadzadeh, Fardin; MehdianBehnamiri, Masoumeh; Mehdi, Ali. (1393). Optimal location of the physical development directions of the Sarkhonkalate city using Analytical Hierarchy Process Analysis (AHP). Geography and Development, No. 37, 164-147. (In Persian)
Xu, Y., Ren, C., Ma, P., Ho, J., Wang, W., Lau, K. K. L., ...& Ng, E. (2017). Urban morphology detection and computation for urban climate research. Landscape and Urban Planning, 167, 212-224.
ghorbani, rasul, Pourmohammadi, Mohammad Reza; Mahmoudzadeh, Hasan. (1392). Environmental Approach in Modeling Land Use Change in Tabriz Metropolitan Area Using Multi-Time Satellite Images, Multi-criteria Evaluation and Markov Markets Automatic Cells (1417-1363). Urban Studies, No.8, 30-13.(In Persian)
Dos Santos, M. M. (2017). Holism, collective intelligence, climate change and sustainable cities. Procedia Computer Science, 109, 763-770.
Marić, I., Pucar, M., &Kovačević, B. (2016). Reducing the impact of climate change by applying information technologies and measures for improving energy efficiency in urban planning. Energy and Buildings, 115, 102-111.
Govindarajulu, D. (2014). Urban green space planning for climate adaptation in Indian cities. Urban climate, 10, 35-41.
Lo, A. Y., Byrne, J. A., & Jim, C. Y. (2017). How climate change perception is reshaping attitudes towards the functional benefits of urban trees and green space: Lessons from Hong Kong. Urban Forestry & Urban Greening, 23, 74-83.
Li, S., Juhsz-Horvth, L., Pedde, S., Pintr, L., Rounsevell, M. D., & Harrison, P. A. (2017). Integrated modelling of urban spatial development under uncertain climate futures. Environmental Modelling& Software, 96(C), 251-264.
Wang, Y., & Zhou, D. (2017). Simulation Study of Urban Residential Development and Urban Climate Change in Xi’an, China. Procedia Engineering, 180, 423-432.
Yu, Z., Guo, X., Jørgensen, G., &Vejre, H. (2017). How can urban green spaces be planned for climate adaptation in subtropical cities? Ecological Indicators, 82, 152-162.
Holabbian, Amir Hossein, Keykhosrowi Kiani, Mohammad Sadegh. (1396). Identification of Spatial Location of Ground Temperature in the Zayandehrood Basin Using Satellite Numerical Data. Geographical Space of Space, No.26, 128-115. (In Persian)
Hashemi Dareh Badami, S., Nouraeisefat, I., Karimi, S., Nazari, S. (2015). Development trend analysis of urban heat island regarding land use/cover changes using time series of landSat images. Journal of RS and GIS for Natural Resources, 6(3), 15-28.
Comprehensive plan of Sari city. (2015).
Al-Murdaysi, Seyyed Ali, Rahimabadi, Abolfazl; Khazari, Sadegh. (2014). Zoning and comparison of ground temperature using two thermal bands 10 and 11 Landsat 8 Case study: Behshahr city. National Conference on Application of Advanced Models of Spatial Analysis in Land Use, Islamic Azad University, Yazd. (In Persian)
Chander, G., Markham, B. L., &Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote sensing of environment, 113(5), 893-903.
Soltani fard .H ,jafari.A(2018). Analysis of greenspace effects on Land Surface Temperature and Urban Heat Inland. Case study Neyshabuor urban area. Journal of Environmental Science and Technology, Articles in Press. (In Persian)
_||_
He, C., Zhao, Y., Huang, Q., Zhang, Q., & Zhang, D. (2015). Alternative future analysis for assessing the potential impact of climate change on urban landscape dynamics. Science of The Total Environment, 532, 48-60.
Poor Ahmad, Ahmad; Ahmadzadeh, Fardin; MehdianBehnamiri, Masoumeh; Mehdi, Ali. (1393). Optimal location of the physical development directions of the Sarkhonkalate city using Analytical Hierarchy Process Analysis (AHP). Geography and Development, No. 37, 164-147. (In Persian)
Xu, Y., Ren, C., Ma, P., Ho, J., Wang, W., Lau, K. K. L., ...& Ng, E. (2017). Urban morphology detection and computation for urban climate research. Landscape and Urban Planning, 167, 212-224.
ghorbani, rasul, Pourmohammadi, Mohammad Reza; Mahmoudzadeh, Hasan. (1392). Environmental Approach in Modeling Land Use Change in Tabriz Metropolitan Area Using Multi-Time Satellite Images, Multi-criteria Evaluation and Markov Markets Automatic Cells (1417-1363). Urban Studies, No.8, 30-13.(In Persian)
Dos Santos, M. M. (2017). Holism, collective intelligence, climate change and sustainable cities. Procedia Computer Science, 109, 763-770.
Marić, I., Pucar, M., &Kovačević, B. (2016). Reducing the impact of climate change by applying information technologies and measures for improving energy efficiency in urban planning. Energy and Buildings, 115, 102-111.
Govindarajulu, D. (2014). Urban green space planning for climate adaptation in Indian cities. Urban climate, 10, 35-41.
Lo, A. Y., Byrne, J. A., & Jim, C. Y. (2017). How climate change perception is reshaping attitudes towards the functional benefits of urban trees and green space: Lessons from Hong Kong. Urban Forestry & Urban Greening, 23, 74-83.
Li, S., Juhsz-Horvth, L., Pedde, S., Pintr, L., Rounsevell, M. D., & Harrison, P. A. (2017). Integrated modelling of urban spatial development under uncertain climate futures. Environmental Modelling& Software, 96(C), 251-264.
Wang, Y., & Zhou, D. (2017). Simulation Study of Urban Residential Development and Urban Climate Change in Xi’an, China. Procedia Engineering, 180, 423-432.
Yu, Z., Guo, X., Jørgensen, G., &Vejre, H. (2017). How can urban green spaces be planned for climate adaptation in subtropical cities? Ecological Indicators, 82, 152-162.
Holabbian, Amir Hossein, Keykhosrowi Kiani, Mohammad Sadegh. (1396). Identification of Spatial Location of Ground Temperature in the Zayandehrood Basin Using Satellite Numerical Data. Geographical Space of Space, No.26, 128-115. (In Persian)
Hashemi Dareh Badami, S., Nouraeisefat, I., Karimi, S., Nazari, S. (2015). Development trend analysis of urban heat island regarding land use/cover changes using time series of landSat images. Journal of RS and GIS for Natural Resources, 6(3), 15-28.
Comprehensive plan of Sari city. (2015).
Al-Murdaysi, Seyyed Ali, Rahimabadi, Abolfazl; Khazari, Sadegh. (2014). Zoning and comparison of ground temperature using two thermal bands 10 and 11 Landsat 8 Case study: Behshahr city. National Conference on Application of Advanced Models of Spatial Analysis in Land Use, Islamic Azad University, Yazd. (In Persian)
Chander, G., Markham, B. L., &Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote sensing of environment, 113(5), 893-903.
Soltani fard .H ,jafari.A(2018). Analysis of greenspace effects on Land Surface Temperature and Urban Heat Inland. Case study Neyshabuor urban area. Journal of Environmental Science and Technology, Articles in Press. (In Persian)