تعیین کارایی کشاورزان با تأکید بر مدیریت صحیح مصرف نهاده¬های شیمیایی و اثرات زیست محیطی (مطالعه موردی: چغندرکاران شهرستان قائن)
محورهای موضوعی : ارزیابی پی آمدهای محیط زیستیالهه آهنی 1 , حمید محمدی 2 , وحید دهباشی 3 , علیرضا سرگزی 4 , سید محمد جعفر اصفهانی 5
1 - دانشجوی دکتری اقتصادکشاورزی، دانشگاه زابل.
2 - استادیارگروه اقتصاد کشاورزی دانشگاه زابل *(مسوول مکاتبات)
3 - استادیارگروه اقتصاد کشاورزی دانشگاه زابل
4 - استادیارگروه اقتصاد کشاورزی دانشگاه زابل
5 - استادیار موسسه پژوهشهای برنامه¬ریزی، اقتصادکشاورزی و توسعه روستایی، تهران، ایران.
کلید واژه: اثرات زیست¬محیطی, کودها و سموم شیمیایی, بازه کارایی. ,
چکیده مقاله :
زمینه و هدف: چغندرقند بعنوان یکی از منابع مهم تأمین انرژی، نقش بسزائی در امنیت¬غذایی جامعه به¬عهده دارد. بنابراین استفاده بهینه از نهاده¬های کشاورزی در تولید این محصول علاوه بر افزایش بهره¬وری و کاهش هزینه تولید، منجر به کاهش انتشار گازهای گلخانه¬ای می¬شود و از اثرگذاری منفی مصرف بی¬رویه نهاده¬های تولیدکشاورزی بر محیط زیست می¬کاهد. در این راستا، هدف از انجام پژوهش حاضر، تعیین بازه کارایی کشاورزان براساس مصرف نهاده¬های کشاورزی در چارچوب داده¬های کران¬دار و تحلیل اثرات زیست محیطی ناشی از مصرف نهاده¬ها بود. روش بررسی: اطلاعات لازم برای انجام تحقیق از طریق مصاحبه و تکمیل 48پرسشنامه از بین چغندرکاران نمونه شهرستان قائن در سال زراعی 99-98 جمع¬آوری شد. یافته¬ها: متوسط کارایی کشاورزان در حالت ستاده- نهاده¬محور برابر (7011/0، 7606/1) و متوسط بازه¬ کارایی کشاورزان (427/0، 0352/0) محاسبه شد. نتایج نشان¬دهنده تولید 7/42 درصد محصول به ازای مصرف یک واحد نهاده است. بعبارتی نشان¬دهنده بازدهی و بهره¬وری تولید چغندرقند است. همچنین مقدار متوسط نهاده¬های مصرفی از جمله: بذر مصرفی، کود فسفات، ازت و سموم به¬ترتیب برابر در تولید چفندرقند، 370/3، 2/ 54، 70/ 139 و 523/2 کیوگرم در هکتار برآورد شده است. متوسط دی¬اکسیدکربن منتشر شده ناشی از تولید چغندرقند و مصرف نهاده¬های ضروری از جمله: کود ازت، و بذر مصرفی، سم به¬ترتیب برابر 73/1480، 65/984، 53/1، 49/11 کیلوگرم درهکتار است. که بیشترین تاثیر زیست¬محیطی را طبق نتایج بدست آمده کود ازت داراست. بحث و نتیجه¬گیری: در تولید چغندرقند انواع مختلفی از نهاده¬ها بکار گرفته می¬شود که علاوه بر افزایش عملکرد اثر زیست¬محیطی نیز به¬دنبال دارد. بنابراین با آگاهی رساندن به کشاورزان از طریق حضور و مشارکت آنان در کلاس¬های ترویجی و همچنین از طریق آموزش کشاورزان درخصوص نحوه صحیح مدیریت و مصرف نهاده¬ها می¬توان از اثرات زیان¬بار استفاده بیش از حد آن¬ها در فرآیند تولید جلوگیری به عمل آورد. در راستای کاهش اثرات زیستی و حفاظتی، کاهش بکارگیری کودهای شیمیایی بایستی جایگزینی کود دامی و ارگانیک توسط تولیدکنندگان و سیاست¬گذاران مورد توجه قرار گیرد. همچنین در اجرای سیاست¬های کاهش یارانه و واقعی کردن قیمت کودشیمیایی و نهاده¬های مصرفی تجدید نظر شود.
Background and Objective: Sugar beet, as one of the important sources of energy supply, plays an important role in food security of society. Therefore, the optimal use of agricultural inputs in the production of this product, in addition to increasing productivity and reducing production costs, leads to reducing greenhouse gas emissions and reducing the negative impact of improper consumption of agricultural inputs on the environment. Finds. In this regard, the purpose of this study was to determine the efficiency range of farmers based on the use of agricultural inputs in an optimistic-pessimistic framework, and analyze the environmental effects of input consumption. Material and Methodology: Information needed to conduct research was collected through interviews and completing 48 questionnaires among sample beet growers in Ghaen city in the 99-98 crop year. Findings: The average efficiency of farmers in the output-input mode was equal (0.7011, 1.7606) and the average efficiency of farmers (0.427, 0.0352) was calculated. The results show that 42.7% of the product is produced per unit consumption. Also, the average amount of inputs such as: seed consumption, phosphate fertilizer, nitrogen and toxins in the production of sugar beet, respectively, is estimated at 3.370, 54.2, 139.70 and 2.523 kg / ha. The amount of carbon dioxide emitted due to the production of sugar beet and the consumption of essential inputs such as: nitrogen fertilizer, and seed consumption, the toxin is 1480.73, 984.65, 1.53, 11.49 kg / ha, respectively. According to the results, nitrogen fertilizer has the greatest environmental impact. Discussion and conclusion: In the production of sugar beet, different types of inputs are used, which in addition to increasing the yield, also have an environmental effect. Therefore, by informing farmers through their presence and participation in extension classes and also by educating farmers about the proper management and consumption of chemical inputs, the harmful effects of their overuse in the production process can be prevented. Brought. In order to reduce the biological and protective effects, reduce the use of chemical fertilizers and replace livestock and organic fertilizers by producers and policy makers should be considered. Also, review the implementation of subsidy reduction policies and the realization of the price of chemical fertilizers and consumer inputs.
1. Jafarnia, M., Esmaeili, Abdolkarim. 2013. Applying environmental effects in technical efficiency analysis Case study: Shiraz city fattening units. Agricultural Economics Research / Volume 5 / Number 2) Pages 151-164.
2. Food and Agriculture Organization (FAO). 2014
3. Ghaderzadeh, H. and Pirmohamadyani, Z. 2019 Evaluation Efficiencies of Energy for Potato Production in Hamedan Province of Iran, Journal of Economics Research. 12 (2): 167-202. (In Persian with English Summary).
4. Khorramdel, S., Shabahang, J., Ahmadzadeh-Ghavidel, R., 2018. Evaluation of carbon sequestration and global warming potential of wheat in Khorasan-Razavi province. Agritech 38 (3), 234_240.
5. Besharatdeh, M., Noruze, Gh., FeazAbadi, Y., 2019. Evaluation of economic-environmental efficiency of tangerine production in Mazandaran province with a rural economy development approach, Quarterly Journal of Space Economics and Rural Development, year8th, 30 (4), 195- 216. (In Persian with English Summary).
6. Yazdani, S., and Rahimi, R. 2013. Evaluation of the efficiency of sugar beet production in Qazvin Plain. Journal of Sugar beet. 28(2):209-221. (In Persian with English Summary).
7. Rashed Ghalam, M., Khalilian, S., 2011. The effects of eliminating subsidies for agricultural inputs on sugar beet production in the country, Journal of Agricultural Knowledge and Sustainable Production. 21(2): 44-52.
8. Agricultural Jihad of Ghaen city,2019
9. Hamedani, S. R., Keyhani, A., Alimardani, R. 2011. Energy use patterns and econometric models of grape production in Hamadan province of Iran. Energy, 36(11), 6345-6351.
10. Taheri-Rad, A., Khojastehpour, M., Rohani, A., Khoramdel, S., & Nikkhah, A, 2017, Energy flow modeling and predicting the yield of Iranian paddy cultivars using artificial neuralnetworks, Energy, 135, 405-412.
11. Pishgar Komleh, H., Omid, M., Heidari, M. D. 2013. On the study of energy use and GHG (greenhouse gas) emissions in greenhouse cucumber production in Yazd province, Energy. 59: 63-71.
12. Houshyar, E., Dalgaard, T., Tarazkar, M. H., and Jørgensen, U. 2015. Energy input for tomato production what economy says, and what is good for the environment, Journal of Cleaner Production, 89: 99-109.
13. Nekukar, A. 2019. Analyzing Economical and Environmental Dimensions of Energy Balance in Sugar Beet Production in Iran, Agricultural Economics / Volume 14 / Number 1 / Pages 143-119. (In Persian with English Summary).
14. Barzgar, A., Soltani, A., Kuchaki., A.R., Zeanali, E., Ghaemi, A.r., 2011. Evaluation of environmental effects of pesticide application in different sugar beet production systems in the provinces of Khorasan, Journal of Agricultural Ecology, 5(2): 122-134. (In Persian with English Summary).
15. Kovach, J., Petzoldt, C., Degni. J., and Tette, J. 2010. A method to measure the environmental impact of pesticides. New York’s food and life sciences bulletin. Geneva, NY: NYS Agricultural experiment station, Cornell University. Available at website: http://www.nysipm.cornell.edu /publications /eiq/files/EIQ_values_2010p1-4.pdf (verified 20 February 2011).
16. Ghullamrezaee, H., KherAlirour, K., Rafiee, Sh., Ghamare, B., 2021. Evaluation of energy and environmental indicators in sugar beet production, Environmental science studies, 6(2):3540- 3548.
17. Platis, D.P., Anagnostopoulos, C.D., Tsaboula, A.D., Menexes, G.C., Kalbu rtji, K.L., and Mamolos, A.P. 2019. Energy Analysis, and Carbon and Water Footprint for Environmentally Friendly Farming Practices in Agroecosystems and Agroforestry, Sustainability: Special Issue Preserving Ecosystem Services via Sustainable Agro-Food Chains". 11 (6): 1664
18. Kardoni, F., Jami-alahmadi, M. and Bakhshi, M. R. 2018. Econometric Analysis of Energy Use in Cereal Production of Iran (Case Study: wheat, Barley, Corn, Rice), Journal of Agricultural Economics Research. 10 (1): 133-148. (In Persian with English summary).
19. Yelmen, B., Sahin, H. and Cakir, M. T. 2019. Energy Efficiency and Economic Analysis in Tomato Production: a Case Study of Mersin Province in the Mediterranean Region, Applied Ecology and Environmental Research. 17(4): 7371-7379. (In Persian with English Summary).
20. Cozer, N., Dal Pont, G., Horodesky, A. and Ostrensky, A. 2019. Infrastructure, Management and Energy Efficiency in a Hypothetical Semi‐Intensive Shrimp Model Farm in Brazil: a Systematic Review and Meta‐Analysis, Review in Aquaculture, 12(2): 1072-1089.
21. Oguz, H. I., Erdogan, O. and Gokdogan, O. 2019. Energy Use Efficiency and Economic Analysis of Nectarine (Prunus persica var. nucipersica) Production: A Case Study from Nigde Province, 61: 323–329.
22. Azizi, H., & Wang, Y.-M. 2013. Improved DEA models for measuring interval efficiencies of decision-making units. Measurement, 46(3), 1325-1332. (In Persian with English summary).
23. Mousavi-Avval, S.H., Rafiee, S., Jafari, A., Mohammadi, A. 2011. Improving energy use efficiency of canola production using data envelopment analysis (DEA) approach. Energy, 36, 2765-2772.
24. Kheiralipour, K., Payandeh, Z., Khoshnevisan, B. 2017. Evaluation of Environmental Impacts in Turkey Production System in Iran. Iranian Journal of Applied Animal Science, 7(3), 507-512.
25. Ohadi, N, Ahani, E, Moradi, E. 2020. Determination of technical efficiency in dairy farms of Sirjan city using fuzzy data envelopment analysis method, Journal of Agricultural Economics Research, Volume 12, Number 47, pp. 252-237. (In Persian with English summary).
26. Farrell, M. J. 1957. The Measurement of Productive Efficiency. Journal of the Royal Statistical Society. Series A (General), 120(3), 253-290. doi:10 .23 07/2343100.
27. Azizi, H., & Jahed, R. 2011. Improved data envelopment analysis models for evaluating interval efficiencies of decision-making units. Computers & Industrial Engineering, 61(3), 897-901.
28. Azizi H. and Fathi ajirloo S. 2010. Measurement of overall performances of decision-making units using ideal andanti-ideal decision-making units. Computers & Industrial Engineering.59:411-418. (In Persian with English summary).
29. Nguyen, T.L.T., Hermansen, J.E., 2012. System expansion for handling co-products in LCA of sugar cane bio-energy systems: GHG consequences of using molasses for ethanol production, Applied Energy. 89 (1): 254-261.
30. Snyder, C., Bruulsema, T., Jensen, T., and Fixen, P. 2009 Review of Greenhouse Gas Emissions from Crop Production Systems and Fertilizer Management Effects, Agriculture, Ecosystems and Environment. 133: 247-266.
31. Lal, R. 2004. CO2 emission from farm operations. Environment Internati onal. 30 (7): 981-990.
32. Bellarby, J., Foereid, B., Hastings, A., Smith, P. 2008. Cool Farming: Climate Impacts of Agriculture and Mitigation Potential. Published by Greenpeace International.
33. Islamabad Agricultural Joint Stock Company, Nimblok - Ghaen city 1398.
34. Miayere, M., Irrigation of autumn sugar beet fields in Khuzestan province, Ministry of Agriculture Agricultural Research, Education and Extension Organization Deputy for Promotion, 2018, Volume 1, Chapter Irrigation time and cycle, paper 29.
35. Fathi, Bahram., Mahdavi Adeli, M., And Fitras, M., 2014. Measuring environ mental energy efficiency in Selected developing countries using static and dy namic nonparametric models. Journal of Studies, Energy Econom, 11 (46) :61-87.