بررسی آزمایشگاهی کار آیی جاذبهای زیستی برجذب نیترات از محلولهای آبی
محورهای موضوعی :
مدیریت محیط زیست
کرامت اخوان گیگلو
1
*
,
علی شاهنظری
2
,
بهمن یارقلی
3
1 - دکتری گروه مهندسی آب، دانشگاه علوم کشاورزی ومنابع طبیعی ساری *(مسوول مکاتبات)
2 - دانشیارگروه مهندسی آب، دانشگاه علوم کشاورزی ومنابع طبیعی ساری
3 - استادیار پژوهشی، موسسه تحقیقات فنی و مهندسی کشاورزی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران
تاریخ دریافت : 1395/05/17
تاریخ پذیرش : 1395/10/15
تاریخ انتشار : 1398/05/01
کلید واژه:
جاذب زیستی,
محلول آبی,
نیترات,
ایزوترم,
چکیده مقاله :
زمینه و هدف: امروزه توسعه کشت آبی با محدودیت منابع آب کشاورزی مواجه میباشد. با شدت یافتن مشکل کمبود آب، اهمیت استفاده از پسابهای شهری، صنعتی و کشاورزی روزبهروز بیشتر میگردد. این تحقیق در مقیاس آزمایشگاهی بهمنظور مطالعه کارایی جاذبهای زیستی در جذب نیترات در محیطهای آبی برای استفاده بهعنوان فیلتر زیستی بهمنظور تصفیه زه آب کشاورزی با استفاده از سبوس برنج، کاه و کلش گندم، خاکاره و ساقه پنبه انجام گرفت.
روش بررسی: جاذبها ابتدا با آب مقطر بهخوبی شستوشو، سپس خشکشده، بهوسیله آسیاب خرد و از الک استاندارد با مش 30 عبور داده شد و پودری یکنواخت از نمونههای جاذب به دست آمد. جهت تهیه غلظت های موردنیاز، محلول نیترات با اضافه کردن مقدار معینی از نیترات پتاسیم به آب مقطر تهیه گردید. برای هریک از جاذبهای زیستی، میزان جذب نیترات در زمانهای مختلف برای تعیین زمان تعادل، تعیین PH بهینه جذب و وزنهای مختلف جاذب بهمنظور تعیین مقدار مناسب جاذب با دستگاه اسپکتروفتومتر مورداندازهگیری قرار گرفت.
یافتهها: نتایج نشان داد بین جاذبهای زیستی در جذب نیترات اختلاف معنیدار در سطح اطمینان 99% وجود داشت و این جاذبها بهطور معنیداری میزان نیترات محلول های آبی را کاهش دادند. در هر چهار جاذب میزان جذب نیترات در زمانهای موردمطالعه(5، 10، 20، 30، 60 و90 دقیقه) ازنظر آماری در سطح اطمینان 99% معنیدار بود. نتایج حاصل از تعیین میزان جاذب مناسب برای داشتن حداکثر کارایی نشان دادکه مناسبترین میزان جاذب، برای هر چهار جاذب موردمطالعه، 1گرم در 40 میلیلیتر محلول به دست آمد و با کاهش مقدار جاذب کارایی جاذبها نیز کاهش مییابد. بررسی مدلهای ایزوترم نیز نشان داد ضرایب همبستگی مدل ایزوترم لانگمویر در همه جاذبها بیشتر از مدل ایزوترم فرندلیچ میباشد بنابراین مدل ایزوترم لانگمویر برای پیشبینی جذب نیترات از محیط آبی توسط جاذبهای موردمطالعه مناسبتر میباشد.
بحث و نتیجهگیری: جاذبهای گیاهی بهطور معنیداری میزان نیترات محلول آبی را کاهش میدهند. برای جذب جاذبهای زیستی موردمطالعه میتوان از مدل لانگمویر بهعنوان ایزوترم جذب استفاده نمود
چکیده انگلیسی:
Background and Objective: Today, development of irrigated lands is faced with limited resources. With the increased water scarcity, the importance of using municipal, industrial and agricultural wastewater is increasing. This study was conducted on laboratory scale to investigate the efficiency of some bioadsorbents (rice husks, wheat straw, woodchips and cotton stalks) in removing nitrate from aqueous solutions and their application as bio filters in agricultural wastewater treatment.
Method: First, absorbents were well-washed with distilled water, dried and crushed by the mill, and percolated through a standard sieve mesh 30 to obtain uniform powder from the absorbent samples. In order to prepare the required concentrations, nitrate solution was added to the distilled water with certain amount of potassium nitrate. For each bioadsorber, a spectrophotometer was used to measure the extent of nitrate removal at contact periods in order to determine the periods required to reach equilibrium, the optimum pH values of adsorbents, and the suitable concentrations of adsorbents.
Findings: Results indicated the significant differences at the confidence level of 99% among the adsorbents in removing nitrate and these adsobents significantly reduced the nitrate in aquous soloutions. In the four adsorbents, the nitrate removal rates at the studied contact periods (5, 10, 20, 30, 60 and 90 minute) were statistically significant at the confidence level of 99%. Results from determining the suitable concentrations of the four studied adsorbents to reach the maximum efficiency showed that 1 g in 40 ml solution was the most suitable concentration. Moreover, reduction in the adsorbents amounts reduced their efficiencies. Study of isotherm models indicated that for all the studied adsorbents correlation coefficients in Langmuir’s isotherm model were higher compared to Friedrich isotherm model. Therefore, Langmuir isotherm model was more suitable for predicting nitrate removal from aqueous solutions by bioadsorbents.
Discussion and Conclusion: Plant absorbers significantly reduce the amount of nitrate in aqueous solution. In this study, Langmuir model can be used as an adsorption isotherm.for adsorption of the bioadsorbents.
منابع و مأخذ:
- جبلی، سید جلال، «راهکارهای کاهش اثرات سوی پسابهای کشاورزی»، مجموعه مقالات همایش اثرات زیستمحیطی پسابهای کشاورزی بر آبهای سطحی و زیرزمینی، کمیته ملی آبیاری و زهکشی، 1380، ص: 12-24.
- Kapoor, A., Viraraghavan, T. 1997. Nitrate removal from drinking water review. Journal of environmental engineering, 123(4), 371-380.
- Liu, A., Ming, J., Ankumah, R. O. 2005. Nitrate contamination in private wells in rural Alabama, United States. Science of the total environment, 346(1), 112-120.
- Jennings, G. D., Sneed, R. E. 1996. Nitrate in drinking water. North Carolina Cooperative Extension Service.
- کرد، ایرج، «بررسی میزان نیترات و نیتریت در منابع آبهای زیرزمینی شهرستان نهاوند»، کتاب مقالات هشتمین همایش ملی بهداشت محیط، آبان 1384، 20ص.
- محسنی، انوشیروان، «مشکلات بهداشتی نیترات در آبهای آشامیدنی (خطرات بهداشتی وجود نیترات در آبهای آشامیدنی)»، مجله علمی پژوهشی دانشگاه علوم پزشکی مازندران شماره 15، تابستان 1376، ص 45-51.
Srivastav, A. L., Singh, P. K., Weng, C. H., & Sharma, Y. C. 2014. Novel adsorbent hydrous bismuth oxide for the removal of nitrate from aqueous solutions. Journal of Hazardous, Toxic, and Radioactive Waste, 19(2).
Ghanbari, F., Moradi, M., Mohseni-Bandpei, A., Gohari, F., Abkenar, T. M., & Aghayani, E. 2014. Simultaneous application of iron and aluminum anodes for nitrate removal: a comprehensive parametric study. International Journal of Environmental Science and Technology, 11(6), 1653-1660.
Malakootain, M., Yaghmaeian, K., TahreGoorabi, M. 2012. Evaluation of removal efficiency of nitrate in drinking water using iron nano-particles and determine the optimal conditions. J School Health, Yazd. 2(1): 35-44.
Dore, M., Simon, P., Deguin, A., & Victot, J. 1986. Removal of Nitrate in Drinking Water by Ion Exchange- Impact on the Chemical Quality of Treated Water. Water Research WATRAG, 20(2): 221-232.
Schoeman, J. J., & Steyn, A. 2003. Nitrate removal with reverse osmosis in a rural area in South Africa. Desalination, 155(1), 15-26.
Hell, F., Lahnsteiner, J., Frischherz, H., & Baumgartner, G.1998. Experience with full-scale electrodialysis for nitrate and hardness removal. Desalination, 117(1-3), 173-180.
Ensie, B., & Samad, S. 2014. Removal of nitrate from drinking water using nano SiO 2–FeOOH–Fe core–shell. Desalination, 347, 1-9.
Nasiri, J., Gholami, A., Panahpoure, E.2013. The application of iron nano particles for cadmium elimination or water resources. Anthesis J; 1(13): 98-102.
Raftari, H., Moazami, H., Ganjidost, H., Ayati, B.2011. Effects of natural absorbents on cupper and land removal. J Environ Sci Technol; 8(3): 97-108.
Azizi, J., Yazdani, S. 2007. Investigation stability income of export date of Iran. J AgricSci. 2007; 13(1): 1-19.
Alsewailem, F. D., Binkhder, Y. A. 2010. Preparation and characterization of polymer/date pits composites. Journal of Reinforced Plastics and Composites, 29(11), 1743-1749.
Mishra, S., Bhattacharya, J. 2007. Batch studies on phenol removal using leaf activated carbon. Malaysian Journal of Chemistry, 5(2), 1-9.
Lima, B., et al. 2008. Application of Brazilian-pine fruit coat as abiosorbent to removal of reactive red 194 taxtil dye from aqueous soluatin. Kinetics and equilibrium study, j. Hazard. Mater.iss, pp.536-550.
Royer, B., Cardoso, N. F., Lima, E. C., Vaghetti, J. C., Simon, N. M., Calvete, T., & Veses, R. C. 2009. Applications of Brazilian pine-fruit shell in natural and carbonized forms as adsorbents to removal of methylene blue from aqueous solutions—Kinetic and equilibrium study. Journal of Hazardous Materials, 164(2), 1213-1222.
صفدری، مهدی. قانعیان، محمد تقی. احرام پوش، محمد حسن، بابائی، علیرضا. امامجمعه، محمد مهدی. زراعی، سلمان ، «بررسی کار آیی خاکستر هسته خرما در حذف نیترات از محلولهای آبی(مطالعه موردی ایزوترمی و سینتیکی)»، ماهنامه علمی پژوهشی دانشگاه علوم پزشکی شهرکرد، ،1393.دوره 16، شماره 6، ص. 56-48.
Banat, F., Al-Asheh, S., & Al-Makhadmeh, L. 2003. Evaluation of the use of raw and activated date pits as potential adsorbents for dye containing waters. Process Biochemistry, 39(2), 193-202.
Han, R., Zhang, J., Zou, W., Shi, J. and Liu, H.2005. Equilibrium biosorption isotherm for lead ion on chaff of hazardous material. B. 125: 266- 271.
Langmuir, I., 1918, Adsorption of materials on biosorption, J. Am. Chem. Soc.40 (9): 1361–1404.
Freundlich, H. M.1906. Uber die adsorption in lasungen. Z. Phys. Chem. 57: 385- 470.
اربابی، محسن. همتی، سارا. رایگان، شهرام. سدهی، مرتضی. خدابخشی، عباس. فدایی، عبالمجید،« بررسی استفاده از پوست بادام مغناطیسی شده با نانو ذرات آهن در حذف نیترات از محیط آبی: مطالعه موردی ایزوترم جذب»، مجله دانشگاه علوم پزشکی شهرکرد. ،1393، دوره 17شماره 659، ص: 92-102.
_||_
- جبلی، سید جلال، «راهکارهای کاهش اثرات سوی پسابهای کشاورزی»، مجموعه مقالات همایش اثرات زیستمحیطی پسابهای کشاورزی بر آبهای سطحی و زیرزمینی، کمیته ملی آبیاری و زهکشی، 1380، ص: 12-24.
- Kapoor, A., Viraraghavan, T. 1997. Nitrate removal from drinking water review. Journal of environmental engineering, 123(4), 371-380.
- Liu, A., Ming, J., Ankumah, R. O. 2005. Nitrate contamination in private wells in rural Alabama, United States. Science of the total environment, 346(1), 112-120.
- Jennings, G. D., Sneed, R. E. 1996. Nitrate in drinking water. North Carolina Cooperative Extension Service.
- کرد، ایرج، «بررسی میزان نیترات و نیتریت در منابع آبهای زیرزمینی شهرستان نهاوند»، کتاب مقالات هشتمین همایش ملی بهداشت محیط، آبان 1384، 20ص.
- محسنی، انوشیروان، «مشکلات بهداشتی نیترات در آبهای آشامیدنی (خطرات بهداشتی وجود نیترات در آبهای آشامیدنی)»، مجله علمی پژوهشی دانشگاه علوم پزشکی مازندران شماره 15، تابستان 1376، ص 45-51.
Srivastav, A. L., Singh, P. K., Weng, C. H., & Sharma, Y. C. 2014. Novel adsorbent hydrous bismuth oxide for the removal of nitrate from aqueous solutions. Journal of Hazardous, Toxic, and Radioactive Waste, 19(2).
Ghanbari, F., Moradi, M., Mohseni-Bandpei, A., Gohari, F., Abkenar, T. M., & Aghayani, E. 2014. Simultaneous application of iron and aluminum anodes for nitrate removal: a comprehensive parametric study. International Journal of Environmental Science and Technology, 11(6), 1653-1660.
Malakootain, M., Yaghmaeian, K., TahreGoorabi, M. 2012. Evaluation of removal efficiency of nitrate in drinking water using iron nano-particles and determine the optimal conditions. J School Health, Yazd. 2(1): 35-44.
Dore, M., Simon, P., Deguin, A., & Victot, J. 1986. Removal of Nitrate in Drinking Water by Ion Exchange- Impact on the Chemical Quality of Treated Water. Water Research WATRAG, 20(2): 221-232.
Schoeman, J. J., & Steyn, A. 2003. Nitrate removal with reverse osmosis in a rural area in South Africa. Desalination, 155(1), 15-26.
Hell, F., Lahnsteiner, J., Frischherz, H., & Baumgartner, G.1998. Experience with full-scale electrodialysis for nitrate and hardness removal. Desalination, 117(1-3), 173-180.
Ensie, B., & Samad, S. 2014. Removal of nitrate from drinking water using nano SiO 2–FeOOH–Fe core–shell. Desalination, 347, 1-9.
Nasiri, J., Gholami, A., Panahpoure, E.2013. The application of iron nano particles for cadmium elimination or water resources. Anthesis J; 1(13): 98-102.
Raftari, H., Moazami, H., Ganjidost, H., Ayati, B.2011. Effects of natural absorbents on cupper and land removal. J Environ Sci Technol; 8(3): 97-108.
Azizi, J., Yazdani, S. 2007. Investigation stability income of export date of Iran. J AgricSci. 2007; 13(1): 1-19.
Alsewailem, F. D., Binkhder, Y. A. 2010. Preparation and characterization of polymer/date pits composites. Journal of Reinforced Plastics and Composites, 29(11), 1743-1749.
Mishra, S., Bhattacharya, J. 2007. Batch studies on phenol removal using leaf activated carbon. Malaysian Journal of Chemistry, 5(2), 1-9.
Lima, B., et al. 2008. Application of Brazilian-pine fruit coat as abiosorbent to removal of reactive red 194 taxtil dye from aqueous soluatin. Kinetics and equilibrium study, j. Hazard. Mater.iss, pp.536-550.
Royer, B., Cardoso, N. F., Lima, E. C., Vaghetti, J. C., Simon, N. M., Calvete, T., & Veses, R. C. 2009. Applications of Brazilian pine-fruit shell in natural and carbonized forms as adsorbents to removal of methylene blue from aqueous solutions—Kinetic and equilibrium study. Journal of Hazardous Materials, 164(2), 1213-1222.
صفدری، مهدی. قانعیان، محمد تقی. احرام پوش، محمد حسن، بابائی، علیرضا. امامجمعه، محمد مهدی. زراعی، سلمان ، «بررسی کار آیی خاکستر هسته خرما در حذف نیترات از محلولهای آبی(مطالعه موردی ایزوترمی و سینتیکی)»، ماهنامه علمی پژوهشی دانشگاه علوم پزشکی شهرکرد، ،1393.دوره 16، شماره 6، ص. 56-48.
Banat, F., Al-Asheh, S., & Al-Makhadmeh, L. 2003. Evaluation of the use of raw and activated date pits as potential adsorbents for dye containing waters. Process Biochemistry, 39(2), 193-202.
Han, R., Zhang, J., Zou, W., Shi, J. and Liu, H.2005. Equilibrium biosorption isotherm for lead ion on chaff of hazardous material. B. 125: 266- 271.
Langmuir, I., 1918, Adsorption of materials on biosorption, J. Am. Chem. Soc.40 (9): 1361–1404.
Freundlich, H. M.1906. Uber die adsorption in lasungen. Z. Phys. Chem. 57: 385- 470.
اربابی، محسن. همتی، سارا. رایگان، شهرام. سدهی، مرتضی. خدابخشی، عباس. فدایی، عبالمجید،« بررسی استفاده از پوست بادام مغناطیسی شده با نانو ذرات آهن در حذف نیترات از محیط آبی: مطالعه موردی ایزوترم جذب»، مجله دانشگاه علوم پزشکی شهرکرد. ،1393، دوره 17شماره 659، ص: 92-102.