مطالعه میزان پالایندگی گیاه اسطوخودوس Lavandula spica L.تحت شرایط آلودگی با سرب
محورهای موضوعی :
آلودگی های محیط زیست (آب، خاک و هوا)
آناهیتا کیارستمی
1
,
وحید عبدوسی
2
,
پژمان مرادی
3
1 - کارشناس ارشد علوم باغبانی، گروه باغبانی، واحد علوم وتحقیقات ،دانشگاه آزاد اسلامی،تهران ، ایران
2 - استادیار گروه باغبانی علوم، واحد علوم وتحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
3 - دانشیار گروه علوم باغبانی، واحد ساوه، دانشگاه آزاد اسلامی، ساوه، ایران *(مسوول مکاتبات)
تاریخ دریافت : 1395/04/12
تاریخ پذیرش : 1395/06/27
تاریخ انتشار : 1398/07/01
کلید واژه:
سرب,
DTPA,
اسطوخودوس,
گیاه پالایی,
چکیده مقاله :
زمینه و هدف: باتوجه به افزایش روز افزون آلودگی در قسمت های مختلف زیست محیطی،گیاهان زینتی و دارویی_زینتی همانند گیاه اسطوخودوس به علت در دسترس بودن و قابل استفاده بودن در فضای سبز شهرها مورد توجه قرار گرفته اند. گیاه پالایی روشی کم هزینه و جدید است که میتوان از این روش در شهر های بزرگ برای کاهش آلودگی فلزات از خاک، آب و اتمسفر استفاده نمود. در این پژوهش تلاش شده است تاثیر سرب بر خصوصیات مورفولوژیکی و فیتوشیمیایی گیاه اسطوخودوس به عنوان آلاینده ای خطرناک برای سلامتی انسان و سایر جانداران مورد ارزیابی قراربگیرد.
روش بررسی:در پژوهش تحمل آلودگی به فلز سرب در گیاه اسطوخودوس بر اساس آزمایش طرح بلوک کاملاً تصادفی با 9 تیمار و 3 تکرار مورد مطالعه قرار گرفت. تیمارها شامل: سرب در 2 غلظت(0و 100 میلی گرم) و DTPA(دی اتیلن تری امین پنتا استیک اسید)در 2 غلظت(1و2 میلی مولار)بود.
یافته ها: نتایج نشان داد که تنش فلزات سنگین موجب کاهش برخی صفات مورد ارزیابی گردید و با اضافه نمودن DTPA(دی اتیلن تری امین پنتا استیک اسید)مقدار جذب فلز سنگین سرب در گیاه اسطوخودوس کاهش یافت.
نتیجه گیری: با افزودن ماده کلات کننده DTPA(دی اتیلن تری امین پنتا استیک اسید) میزان جذب این فلز سنگین توسط گیاه مورد مطالعه بطور چشمگیری کاهش یافت.
چکیده انگلیسی:
Abstract:
Background and objective: Considering the ever increasing state of pollution in different aspects of the environment, ornamental plants and herbs such as Lavandula have become the center of attention mostly due to their availability and use in urban green spaces. Phytoremediation is a modern and economical method which can be applied to metropolises for decreasing metal contaminations in soil, water and atmosphere. Additionally, throughout this study we tried to determine the impact of lead on morphology and phyto-chemistry properties of Lavandula as a hazardous pollutant for the health of man and other organisms.
Method: Through this study, we examined the contamination resistance of Lavandula against lead through 3 completely randomized block design experiments. The treatments included: lead in 2 concentrations (0 and 100 mg) and DTPA in 2 concentrations (1 and 2 mM).
Results: The results suggested that heavy metals' stress causes the decrease of morphologic properties being studied and by adding DTPA, the lead absorption decreased in Lavandula.
Conclusion: by adding the DTPA chelate, the absorption level of this heavy metal by Lavandula decreased significantly.
منابع و مأخذ:
Alloway, B. J., 1990. Heavy Metals in Soils: Lead.Blackie and Glasgow. Ltd. London.p 177-196.
Yargholi, B, 2007, Quantitative- qualitative changes of Firozabad wastewater for use in agriculture, agricultural engineering research institute, P 56- 58.
Mohammadi Golnakeshi, M., 1997, The effect of heavy metals on water resources in Khuzestan province after the fire of Kuwait oil wells.
Yadav, S. K., 2010. Heavy metals toxicity in plants:An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants, South African Journal of Botany, 76:167–179.
Kling, J. ,1997. Phytoremediation of organics moving rapidly into field trials. Environ. Sci. Technol. 31, A129.
Chaney, R.L., M. Malik, Y.M. Lim, S.L. Brown, E.P. Brewer, J.S. Angle and A.J.M. Baker. ,1997. Phytoremediation of soil metals. Curr. Opinion Biotechnol. 8:279-284.
McGrath, S.P., C.M.D. Sidoli, A.J.M. Baker and R.D. Reeves. ,1993. The potential for the use of metalaccumulating plants for the in situ decontamination of metal-polluted soils. PP. 673–677. In: H.J.P. Eijsackers and T. Hamers (Eds.), Integrated Soil and Sediment Research: A Basis for Proper Protection. Kluwer Academic Pub., Dordrecht, The Netherlands.
Raskin, I., P.B.N.A. Kumar, V. Dushenkov and D.E. Salt., 1994. Bioconcentration of heavy metals by plants. Curr.Opin. Biotechnol. 5:285–290.
Blaylock, M.J., D.E. Salt, S. Dushenkov, O. Zakharova, C. Gussman and Y. Kapulnik., 1997. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci. Technol. 31:860–865.
Shen, Z.G., X.D. Li, C.C. Wang, H. M. Chen and H. Chua., 2002. Lead phytoextraction from contaminated soils with high-biomass plant species. J. Environ. Quality 31:1893-1900.
Huang, J.W., J.J. Chen, W.R. Berti and S.D. Cunningham., 1997. Phytoremediation of lead-contaminated soils: Role of synthetic chelates in lead phytoextraction. Environ. Sci. Technol. 31:800–805.
Karimi, N., Khan Ahmadi, M., Moradi, B., 2013, Effect of different lead concentrations on some Physiological parameters of artichoke plants. Plants of plant production research. Vol, 20, no.1.
Omid beygi, 2000, Production and Processing of Medicinal Plants, vol.3, Astan Quds publication.
Bates, L., R. P. Waldren and I. D.
Teare., 1973. Rapid determination of free proline for water-stress studies. Plant and Soil. 39: 205-207.
Khatibi, M., Rashed, M.H., Ganjeali, A., and Lahooti, M. ,2008. The effects of different nickel concentration on some morpho-physiological characteristics of parsely. Iran. J. Field Crops Res. 2: 295-302.
Sharma,p., and Dubey ,R.S.H., 2005. Lead toxicity in plants.Plant physiol.17:35-52
Lutts,S.J.,Kint,M.,Bouharmount,J.,1996.Effect of various salts and mannitolon ion and prolin accumulation in relation to osmotic adjustment in rice (orizasativum) callus cultures. journal of plant physiology, 149:186-195.
Hare, P.D., Cress, W.A., 1996. Metabolic implications of stress –induced prolin accumulation in plants. plant Growth regulation, 21(2):79-102.
Schat, H., Sharma, S. and Vooijs, R., 1997.Heavy metal induced accumulation of free proline in a metal tolerant and non tolerant ecotype of silene vulgaris. physiologia plantarum 101:477-482.
Stewart, G. R. and J. A. Lee. ,1974. The role of proline accumulation in halophytes. Planta.120: 279-289.
Flores, P., M. A. Botella., V. Martinez and A. Cerda., 2002. Response to salinity of tomato seedlings with a split-root system: nutrient uptake and reduction. Journal of Plant Nutrition. 25: 177-187.
Turhan, H. and C. Ayaz. ,2004. Effect of salinity on seedling emergence and growth of sunflower (Helianthus annuus L.) cultivars. Int J Agri Biol. 6 : 149–152.
Luis,A,Del Rio,D., Lyon,I., Bruce, G. and Marvinl, S.,1983 .Immunocyto chemical evidence for a peroxisomal localization of manganese superoxide dismutase in leaf protoplasts from a higher plant.planta,158:216-224
Schutzendubel, A. and Polle,A., 2002.plant responses to abiotic stress:heavy metal-induced oxidative stress and protection by mycorrhization.J.Exp.Botany.53:1351-1365
Garnczarska,M. and Ratajczok, D.,2000.Metabolic responses of lemna minor to lead ions,II . Induction of antioxidant enzymes in roots Acta physiologiae plantarum,22:429-432
Almeida,AF.,Valle,A.A.,Mielke,M.S.,Gomes,F.P., and Broz ,j., 2007.Tolerance and prospection of phytoremediator woody species of cd, pb, cu and cr: plant physiol.19:83-98
Khudsar,T.,uzzafar, M., soh ,W.Y., and Iqbal, M,. 2000. Morphological and anatomicalvariations of cajanus cajan raised in cadmium-rich soil.j.plant Biol 43:149-157
_||_
Alloway, B. J., 1990. Heavy Metals in Soils: Lead.Blackie and Glasgow. Ltd. London.p 177-196.
Yargholi, B, 2007, Quantitative- qualitative changes of Firozabad wastewater for use in agriculture, agricultural engineering research institute, P 56- 58.
Mohammadi Golnakeshi, M., 1997, The effect of heavy metals on water resources in Khuzestan province after the fire of Kuwait oil wells.
Yadav, S. K., 2010. Heavy metals toxicity in plants:An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants, South African Journal of Botany, 76:167–179.
Kling, J. ,1997. Phytoremediation of organics moving rapidly into field trials. Environ. Sci. Technol. 31, A129.
Chaney, R.L., M. Malik, Y.M. Lim, S.L. Brown, E.P. Brewer, J.S. Angle and A.J.M. Baker. ,1997. Phytoremediation of soil metals. Curr. Opinion Biotechnol. 8:279-284.
McGrath, S.P., C.M.D. Sidoli, A.J.M. Baker and R.D. Reeves. ,1993. The potential for the use of metalaccumulating plants for the in situ decontamination of metal-polluted soils. PP. 673–677. In: H.J.P. Eijsackers and T. Hamers (Eds.), Integrated Soil and Sediment Research: A Basis for Proper Protection. Kluwer Academic Pub., Dordrecht, The Netherlands.
Raskin, I., P.B.N.A. Kumar, V. Dushenkov and D.E. Salt., 1994. Bioconcentration of heavy metals by plants. Curr.Opin. Biotechnol. 5:285–290.
Blaylock, M.J., D.E. Salt, S. Dushenkov, O. Zakharova, C. Gussman and Y. Kapulnik., 1997. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci. Technol. 31:860–865.
Shen, Z.G., X.D. Li, C.C. Wang, H. M. Chen and H. Chua., 2002. Lead phytoextraction from contaminated soils with high-biomass plant species. J. Environ. Quality 31:1893-1900.
Huang, J.W., J.J. Chen, W.R. Berti and S.D. Cunningham., 1997. Phytoremediation of lead-contaminated soils: Role of synthetic chelates in lead phytoextraction. Environ. Sci. Technol. 31:800–805.
Karimi, N., Khan Ahmadi, M., Moradi, B., 2013, Effect of different lead concentrations on some Physiological parameters of artichoke plants. Plants of plant production research. Vol, 20, no.1.
Omid beygi, 2000, Production and Processing of Medicinal Plants, vol.3, Astan Quds publication.
Bates, L., R. P. Waldren and I. D.
Teare., 1973. Rapid determination of free proline for water-stress studies. Plant and Soil. 39: 205-207.
Khatibi, M., Rashed, M.H., Ganjeali, A., and Lahooti, M. ,2008. The effects of different nickel concentration on some morpho-physiological characteristics of parsely. Iran. J. Field Crops Res. 2: 295-302.
Sharma,p., and Dubey ,R.S.H., 2005. Lead toxicity in plants.Plant physiol.17:35-52
Lutts,S.J.,Kint,M.,Bouharmount,J.,1996.Effect of various salts and mannitolon ion and prolin accumulation in relation to osmotic adjustment in rice (orizasativum) callus cultures. journal of plant physiology, 149:186-195.
Hare, P.D., Cress, W.A., 1996. Metabolic implications of stress –induced prolin accumulation in plants. plant Growth regulation, 21(2):79-102.
Schat, H., Sharma, S. and Vooijs, R., 1997.Heavy metal induced accumulation of free proline in a metal tolerant and non tolerant ecotype of silene vulgaris. physiologia plantarum 101:477-482.
Stewart, G. R. and J. A. Lee. ,1974. The role of proline accumulation in halophytes. Planta.120: 279-289.
Flores, P., M. A. Botella., V. Martinez and A. Cerda., 2002. Response to salinity of tomato seedlings with a split-root system: nutrient uptake and reduction. Journal of Plant Nutrition. 25: 177-187.
Turhan, H. and C. Ayaz. ,2004. Effect of salinity on seedling emergence and growth of sunflower (Helianthus annuus L.) cultivars. Int J Agri Biol. 6 : 149–152.
Luis,A,Del Rio,D., Lyon,I., Bruce, G. and Marvinl, S.,1983 .Immunocyto chemical evidence for a peroxisomal localization of manganese superoxide dismutase in leaf protoplasts from a higher plant.planta,158:216-224
Schutzendubel, A. and Polle,A., 2002.plant responses to abiotic stress:heavy metal-induced oxidative stress and protection by mycorrhization.J.Exp.Botany.53:1351-1365
Garnczarska,M. and Ratajczok, D.,2000.Metabolic responses of lemna minor to lead ions,II . Induction of antioxidant enzymes in roots Acta physiologiae plantarum,22:429-432
Almeida,AF.,Valle,A.A.,Mielke,M.S.,Gomes,F.P., and Broz ,j., 2007.Tolerance and prospection of phytoremediator woody species of cd, pb, cu and cr: plant physiol.19:83-98
Khudsar,T.,uzzafar, M., soh ,W.Y., and Iqbal, M,. 2000. Morphological and anatomicalvariations of cajanus cajan raised in cadmium-rich soil.j.plant Biol 43:149-157