بررسی اثرات زیستمحیطی چهار رقم ذرت بر مبنای میزان مصرف کود نیتروژن با استفاده از ارزیابی چرخه حیات (LCA)
محورهای موضوعی : کشاورزی و محیط زیستسید مصطفی صادقی 1 * , سید علی نورحسینی 2
1 - دانشیار گروه زراعت و اصلاح نباتات، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران *(مسؤول مکاتبات).
2 - باشگاه پژوهشگران جوان و نخبگان، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران
کلید واژه: تخلیه منابع, گرمایش جهانی, سوخت دیزل, کود اوره, اوتریفیکاسیون,
چکیده مقاله :
زمینه و هدف: مصرف کودهای شیمیایی اثرات منفی زیادی بر محیط زیست تحمیل می کنند. لذا به منظور ارزیابی بررسی اثرات زیست محیطی چهار رقم ذرت بر مبنای مصرف کود نیتروژن تحقیقی با استفاده از روش ارزیابی چرخه حیات در منطقه لاهیجان انجام گرفت. روش بررسی: بدین منظور، آزمایش مزرعه ای به صورت اسپلیت پلات در قالب طرح بلوک های کامل تصادفی در سه تکرار اجرا شد. تیمارها شامل سطوح مختلف کود نیتروژن (300، 400 و 500 کیلوگرم اوره در هکتار) به عنوان عامل اصلی و چهار رقم ذرت (KSC 647، KSC 700، KSC 704 و Local) به عنوان عامل فرعی بودند. در این مطالعه، شش گروه تأثیر گرمایش جهانی، اسیدیته، اوتریفیکاسیون خشکی، تخلیه منابع فسیلی، تخلیه منابع فسفات و تخلیه منابع پتاسیم بررسی شدند. اثرات در قالب واحد عملکردی تولید یک تن ذرت مطالعه شد. یافته ها: نتایج این مطالعه نشان داد که بالاترین شاخص زیست محیطی (53/1) و شاخص تخلیه منابع (11/1) در تولید یک تن ذرت رقم محلی با مصرف 500 کیلوگرم کود اوره در هکتار بهدست آمد. کم ترین مقدار شاخص زیست محیطی (39/0) و شاخص تخلیه منابع (45/0) نیز در تیمار مصرف 300 کیلوگرم کود اوره در تولید یک تن رقم KSC 647 مشاهده شد. بحث و نتیجه گیری: در این مطالعه هرچند بین تیمارهای مختلف نیتروژن تفاوتی از لحاظ عملکرد ذرت وجود نداشت، اما انتخاب رقم برتر (KSC 647) از لحاظ عملکرد با کاهش مصرف نیتروژن باعث کاهش آسیب به محیط زیست شد.
Background and Objective: The use of chemical fertilizers has many negative effects on the environment. Therefore, in order to evaluate the environmental effects of four maize cultivars based on the use of nitrogen fertilizer, research was conducted using the life cycle assessment method in Lahijan region. Method: For this purpose, a field experiment was performed as a split plot in a randomized complete block design with three replications. Treatments were consisted different nitrogen levels (300, 400 and 500 kg/ha urea) as the main plot and four varieties of corn (KSC 647, KSC 700, KSC 704 and Local) as the subplots. In this studysix groups were investigated; the global warming, acidification, terrestrial eutrophication, the depletion of fossil resources, the depletion of potassium and the depletion of phosphate. Production of one ton of corn was considered as a functional unit to evaluate the environmental impacts. Findings: The results showed that maximum environmental index (1.53) and resources depletion index (1.11) was in production of one-ton local variety of corn with treatment 500 kg/ha urea. The minimum environmental index (0.39) and resources depletion index (0.45) was in production of one ton KSC 647 variety of corn with treatment 300 kg/ha urea. Discussion and Conclusion: Although there was not a difference between the different treatments of nitrogen in terms of corn yield, but the selection of superior varieties in terms of yield, by reducing nitrogen consumption, reduced damage to the environment.
1. McDevitt, J.E. and Milài Canals, L. 2011. Can life cycle assessment be used to evaluate plant breeding objectives to improve supply chain sustainability? A worked example using porridge oats from the UK. Int. J. Agric. Sustain., 9: 484–494.
2. Food and Agriculture Organisation of the United Nations (FAO). 2011. Save and Grow: A Policymaker’s Guide to the Sustainable Intensification of Smallholder Crop Production; FAO: Rome, Italy, 2011.
3. Ceccarelli, S. 1994. Specific adaptation and breeding for marginal conditions. Euphytica, 77: 205–219.
4. Ceccarelli, S., Grando, S. and Hamblin, J. 1992. Relationship between barley-grain yield measured in low-yielding and high-yielding environments. Euphytica, 64: 49–58.
5. Phillips, S.L. and Wolfe, M.S. 2005. Evolutionary plant breeding for low input systems. J. Agric. Sci., 143: 245–254.
6. Fess, T.L., Kotcon, J.B. and Benedito, A. 2011. Crop breeding for low input agriculture: A sustainable response to feed a growing population. Sustainability, 3: 1742–1772.
7. Guarda, G., Padovan, S. and Delogu, G. 2004. Grain yield, nitrogen-use efficiency and baking quality of old and modern Italian bread-wheat cultivars grown at different nitrogen levels. Eur. J. Agron., 21: 181-192.
8. Tester, M. and Langridge, P. 2010. Breeding technologies to increase crop production in a changing world. Science, 327: 818–822.
9. Williams, A.G., Audsley, E. and Sandars, D.L. 2006. Determining the Environmental Burdens and Resource Use in the Production of Agricultural and Horticultural Commodities; Defra Project Report IS0205; Cranfield University, DEFRA: Bedford, UK.
10. Tuomisto, H., Hodge, I., Riordan, P. and Macdonald, D. 2012. Comparing global warming potential, energy use and land use of organic, conventional and integrated winter wheat production. Ann. Appl. Biol., 161: 116–126.
11. Soltani, A., Rajabi, M.H., Zeinali, E. and Soltani, E. 2010. Evaluation of environmental impact of crop production using LCA: wheat in Gorgan. Electronic Journal of Crop Production, 3(3): 201-218.
12. Energy the Balance Sheet. 2008. Available at Web site http://www.moe.gov.ir/(In Persian)
13. Pennington, D.W., Potting, J., Finnveden, G., Lindeijer, E., Jolliete, O., Rydberg, T., and Rebitzer, G. 2004. Life cycle assessment Part 2: Current impact assessment practice. Environ. Int., 30: 721-739.
14. Roy, P., Shimizu, N., and Kimura, T. 2005. Life cycle inventory analysis of rice produced by local processes. JSAM., 67(1): 61-67.
15. Brentrup, F., Küsters, J., Kuhlmann, H., and Lammel, J. 2004a. Environmental impact assessment of agricultural production systems using the life cycle assessment methodology: I. Theoretical concept of a LCA method tailored to crop production. European Journal of Agronomy, 20(3): 247-264.
16. Brentrup, F., Küsters, J., Lammel, J., Barraclough, P., and Kuhlmann, H. 2004b. Environmental impact assessment of agricultural production systems using the life cycle assessment (LCA) methodology II. The application to N fertilizer use in winter wheat production systems. European Journal of Agronomy, 20(3): 265-279.
17. Renouf, M.A., Wegener, M.k., and Nielsen, L.K. 2008. An environmental life cycle assessment comparing Australian sugarcane with US corn and UK sugar beet as producers of sugars for fermentation. Biomass and Bioenergy, 32:1144-1155.
18. Van der Werf, H.M.G., and Turunen, L. 2008. The environmental impacts of the production of hemp and flax textile yarn. Ind. Crops Prod., 27: 1-10.
19. Wang, M., Wu, W., Liu, W., and Bao, Y. 2007. Life cycle assessment of the winter wheat-summer maize production system on the North China Plain. International Journal of Sustainable Development and World Ecology, 14(4): 400-407.
20. Iriarte, A., Rieradevall, J., and Gabarrell, X. 2010. Life cycle assessment of sunflower and rapeseed as energy cropsunder Chilean conditions. Journal of Cleaner Production, 18(4): 336-345.
21. Charles, R., Jolliet, O., Gaillard. G., and Pellet, D. 2006. Environmental analysis of intensity level in wheat crop production using life cycle assessment. Agriculture, Ecosystems and Environment, 113(1-4): 216-225.
22. Abeliotis, K., Detsis, V., and Pappia, C. 2013. Life cycle assessment of bean production in the Prespa Natinal Park. Greece. Journal of Cleaner production, 41(1): 89-96.
23. Mirhaji, H., Khojastehpour, M., and Abaspour-fard, M.H. 2013. Environmental effects of wheat production in Marvdasht region. Journal of Natural Environment, 66(2): 223-232.
24. Taghavi, D., Ajali, J., Valadyani, A.L., and Fatahi, I. 2008. Evaluation of energy efficiency in dry farming of barley (Hordeum vulgar L.) field in Azarbayejan-e-Sharqi provic, Iran. J. New Agric. Sci. 3(7):41-49.
25. Khan, S., Khan, M. A., and Latif, N. 2010. Energy requirements and economic analysis of wheat, rice and barley production in Australia. The Soil Environ., 26:61-68
26. Khanali, M., Movahedi, M., Yousefi, M., Jahangiri, S. and Khoshnevisan, B. 2016. Investigating energy balance and carbon footprint in saffron cultivation – a case study in Iran. Journal of Cleaner Production, 115: 162-171.
27. Fallahpour, F., Aminghafouri, A., Ghalegolab-Behbahani, A. and Bannayan, M., 2012. The environmental impact assessment of wheat and barley production by using life cycle assessment (LCA) methodology. Environ. Dev. Sustain., 14: 979-992.
28. Bacenetti, J., Pessina, D., Marco Fiala, M., 2016. Environmental assessment of different harvesting solutions for Short Rotation Coppice plantations.Science of the Total Environment, 541: 210–217.
29. Nikkhah, A., Khojastehpour, A, Emadi, B. Taheri-Rad, A.R., Khorramdel, S. 2015. Environmental impacts of peanut production system using life cycle assessment methodology. Journal of Cleaner Production, 92: 84-90.
30. Nikkhah, A., Emadi, B., Soltanali, H., Firouzi, S., Rosentrater, K., Allahyari, M.S. 2016. Integration of Life Cycle Assessment and Cobb-Douglas Modeling for the Environmental Assessment of Kiwifruit in Iran, Journal of Cleaner Production, 137: 843-849.
31. Brentrup, F., Küsters, J., Lammel, J. and Kuhlmann, H. 2000. Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. The International Journal of Life Cycle Assessment, 5(6): 349-357.
32. CPM, (2007) SPINE@CPM database. Competence center in environmental assessment of product and material systems (CPM), Chalmers University of Technology,Goteborg.
33. Tzilivakis, J., Warner, D.J., May, M., Lewis, K.A. and Jaggard, K. 2005. An assessment of the energy inputs and greenhouse gas emissions in sugar beet (Beta vulgaris) production in the UK. Agricultural Systems, 85(2): 101-119.
34. Dehghani, H. 2007. Guide to Air Quality, Principles of Meteorology and Air Pollution. Publications of Ghashie. Tehran, Iran 402 p.
35. Goebes, M.D., Strader, R., and Davidson, C. 2003. An ammonia emission inventory for fertilizer application in the United States. Atmospheric Environment, 37(18): 2539-2550.
36. Snyder, C.S., Bruulsema, T.W., Jensen, T.L., and Fixen, P.E. 2009. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agriculture, Ecosystems and Environment, 133(3-4): 247-266.
37. Gasol, C.M., Gabarrell, X., Anton, A., Rigola, M., Carrasco, J., Ciria, P., Solano, M.L., and Rieradevall, J. 2007. Life cycle assessment of a Brassica carinata bioenergy cropping system in southern Europe. Biomass and Bioenergy, 31(8): 543-555.
38. Taheri-Rad, A.R., Nikkhah, A., Khojastehpour, M., Nourozieh, Sh. 2015. Assessing GHG emissions, and energy and economic analysis of cotton production in the Golestan province. Journal of Agricultural Machinery, 5(2): 428-445.
39. Soltanali, H., Emadi, B., Rohani, A., Khojastehpour, M., Nikkhah , A. 2015. Life cycle assessment modeling of milk production in Iran, Information Processing in Agriculture, 2: 101-108.
40. Shoghi Kalkhoran S., Ghalavand A., Modarres Sanavy S.A.M., Akbari P. 2011. Effect of Nitrogen Fertilizer and Bio Fertilizer Application on Yield and Quality of Sunflower (Helianthus Annuus L.). Iranian Journal of Crop Sciences, 12(4): 467-481.
41. Many, A., Bahar, A., Zeridan, M.S., and Hazayn, M. 2006. Yield and quality of Maize (Zea mays L.) as affected by slow- release nitrogen in newly reclaimed sandy soil. American-Eurasian J. Agric. Environ. Sci., 1(3): 239-242.
42. Marshner, H. 1995. Mineral nutrition of higher plants. Academic Press, London, England. 889 P.
43. Malakouti, M.J., Bybordi, A., Lotfollahi, M., Shahabi, A.A., Siavoshi, K., Vakil, R., Ghaderi, J., Shahabifar Majidi, J., Jafarnajadi, A.R., Dehghani, F., Keshavarz, M.H., Ghasemzadeh, M., Ghanbarpouri, R., Dashadi, M., Babaakbari, M., and Zaynalifard, N. 2008. Comparison of complete and sulfur coated urea fertilizers with pre-plant urea in increasing grain yield and nitrogen use efficiency in wheat. J. Agric. Sci. Technol., 10: 173-183.
44. Jokela, W.E. and Randall, G.W. 1989. Corn Yield and Residual Soil Nitrate as Affected by time and Rate if Nitrogen Application. Agron. J., 81: 720-726.
45. Moll, R.H., E.J. Kamprath and W.A. Jackson. 1982. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron. J., 74:262-264.
46. Tajbakhsh, M. and Pourmirza, A.A. 2003. Cereal Crops. University Jihad Publications, West Azarbaijan, 314p.
47. Mirhaji, H., Khojastehpour, M., Abaspour-fard, M.H., and Mahdavi Shahri, S.M. 2012. Environmental impact study of sugar beet production using life cycle assessment in Khorasan province. Agroecology, 4: 112-120.
_||_
1. McDevitt, J.E. and Milài Canals, L. 2011. Can life cycle assessment be used to evaluate plant breeding objectives to improve supply chain sustainability? A worked example using porridge oats from the UK. Int. J. Agric. Sustain., 9: 484–494.
2. Food and Agriculture Organisation of the United Nations (FAO). 2011. Save and Grow: A Policymaker’s Guide to the Sustainable Intensification of Smallholder Crop Production; FAO: Rome, Italy, 2011.
3. Ceccarelli, S. 1994. Specific adaptation and breeding for marginal conditions. Euphytica, 77: 205–219.
4. Ceccarelli, S., Grando, S. and Hamblin, J. 1992. Relationship between barley-grain yield measured in low-yielding and high-yielding environments. Euphytica, 64: 49–58.
5. Phillips, S.L. and Wolfe, M.S. 2005. Evolutionary plant breeding for low input systems. J. Agric. Sci., 143: 245–254.
6. Fess, T.L., Kotcon, J.B. and Benedito, A. 2011. Crop breeding for low input agriculture: A sustainable response to feed a growing population. Sustainability, 3: 1742–1772.
7. Guarda, G., Padovan, S. and Delogu, G. 2004. Grain yield, nitrogen-use efficiency and baking quality of old and modern Italian bread-wheat cultivars grown at different nitrogen levels. Eur. J. Agron., 21: 181-192.
8. Tester, M. and Langridge, P. 2010. Breeding technologies to increase crop production in a changing world. Science, 327: 818–822.
9. Williams, A.G., Audsley, E. and Sandars, D.L. 2006. Determining the Environmental Burdens and Resource Use in the Production of Agricultural and Horticultural Commodities; Defra Project Report IS0205; Cranfield University, DEFRA: Bedford, UK.
10. Tuomisto, H., Hodge, I., Riordan, P. and Macdonald, D. 2012. Comparing global warming potential, energy use and land use of organic, conventional and integrated winter wheat production. Ann. Appl. Biol., 161: 116–126.
11. Soltani, A., Rajabi, M.H., Zeinali, E. and Soltani, E. 2010. Evaluation of environmental impact of crop production using LCA: wheat in Gorgan. Electronic Journal of Crop Production, 3(3): 201-218.
12. Energy the Balance Sheet. 2008. Available at Web site http://www.moe.gov.ir/(In Persian)
13. Pennington, D.W., Potting, J., Finnveden, G., Lindeijer, E., Jolliete, O., Rydberg, T., and Rebitzer, G. 2004. Life cycle assessment Part 2: Current impact assessment practice. Environ. Int., 30: 721-739.
14. Roy, P., Shimizu, N., and Kimura, T. 2005. Life cycle inventory analysis of rice produced by local processes. JSAM., 67(1): 61-67.
15. Brentrup, F., Küsters, J., Kuhlmann, H., and Lammel, J. 2004a. Environmental impact assessment of agricultural production systems using the life cycle assessment methodology: I. Theoretical concept of a LCA method tailored to crop production. European Journal of Agronomy, 20(3): 247-264.
16. Brentrup, F., Küsters, J., Lammel, J., Barraclough, P., and Kuhlmann, H. 2004b. Environmental impact assessment of agricultural production systems using the life cycle assessment (LCA) methodology II. The application to N fertilizer use in winter wheat production systems. European Journal of Agronomy, 20(3): 265-279.
17. Renouf, M.A., Wegener, M.k., and Nielsen, L.K. 2008. An environmental life cycle assessment comparing Australian sugarcane with US corn and UK sugar beet as producers of sugars for fermentation. Biomass and Bioenergy, 32:1144-1155.
18. Van der Werf, H.M.G., and Turunen, L. 2008. The environmental impacts of the production of hemp and flax textile yarn. Ind. Crops Prod., 27: 1-10.
19. Wang, M., Wu, W., Liu, W., and Bao, Y. 2007. Life cycle assessment of the winter wheat-summer maize production system on the North China Plain. International Journal of Sustainable Development and World Ecology, 14(4): 400-407.
20. Iriarte, A., Rieradevall, J., and Gabarrell, X. 2010. Life cycle assessment of sunflower and rapeseed as energy cropsunder Chilean conditions. Journal of Cleaner Production, 18(4): 336-345.
21. Charles, R., Jolliet, O., Gaillard. G., and Pellet, D. 2006. Environmental analysis of intensity level in wheat crop production using life cycle assessment. Agriculture, Ecosystems and Environment, 113(1-4): 216-225.
22. Abeliotis, K., Detsis, V., and Pappia, C. 2013. Life cycle assessment of bean production in the Prespa Natinal Park. Greece. Journal of Cleaner production, 41(1): 89-96.
23. Mirhaji, H., Khojastehpour, M., and Abaspour-fard, M.H. 2013. Environmental effects of wheat production in Marvdasht region. Journal of Natural Environment, 66(2): 223-232.
24. Taghavi, D., Ajali, J., Valadyani, A.L., and Fatahi, I. 2008. Evaluation of energy efficiency in dry farming of barley (Hordeum vulgar L.) field in Azarbayejan-e-Sharqi provic, Iran. J. New Agric. Sci. 3(7):41-49.
25. Khan, S., Khan, M. A., and Latif, N. 2010. Energy requirements and economic analysis of wheat, rice and barley production in Australia. The Soil Environ., 26:61-68
26. Khanali, M., Movahedi, M., Yousefi, M., Jahangiri, S. and Khoshnevisan, B. 2016. Investigating energy balance and carbon footprint in saffron cultivation – a case study in Iran. Journal of Cleaner Production, 115: 162-171.
27. Fallahpour, F., Aminghafouri, A., Ghalegolab-Behbahani, A. and Bannayan, M., 2012. The environmental impact assessment of wheat and barley production by using life cycle assessment (LCA) methodology. Environ. Dev. Sustain., 14: 979-992.
28. Bacenetti, J., Pessina, D., Marco Fiala, M., 2016. Environmental assessment of different harvesting solutions for Short Rotation Coppice plantations.Science of the Total Environment, 541: 210–217.
29. Nikkhah, A., Khojastehpour, A, Emadi, B. Taheri-Rad, A.R., Khorramdel, S. 2015. Environmental impacts of peanut production system using life cycle assessment methodology. Journal of Cleaner Production, 92: 84-90.
30. Nikkhah, A., Emadi, B., Soltanali, H., Firouzi, S., Rosentrater, K., Allahyari, M.S. 2016. Integration of Life Cycle Assessment and Cobb-Douglas Modeling for the Environmental Assessment of Kiwifruit in Iran, Journal of Cleaner Production, 137: 843-849.
31. Brentrup, F., Küsters, J., Lammel, J. and Kuhlmann, H. 2000. Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. The International Journal of Life Cycle Assessment, 5(6): 349-357.
32. CPM, (2007) SPINE@CPM database. Competence center in environmental assessment of product and material systems (CPM), Chalmers University of Technology,Goteborg.
33. Tzilivakis, J., Warner, D.J., May, M., Lewis, K.A. and Jaggard, K. 2005. An assessment of the energy inputs and greenhouse gas emissions in sugar beet (Beta vulgaris) production in the UK. Agricultural Systems, 85(2): 101-119.
34. Dehghani, H. 2007. Guide to Air Quality, Principles of Meteorology and Air Pollution. Publications of Ghashie. Tehran, Iran 402 p.
35. Goebes, M.D., Strader, R., and Davidson, C. 2003. An ammonia emission inventory for fertilizer application in the United States. Atmospheric Environment, 37(18): 2539-2550.
36. Snyder, C.S., Bruulsema, T.W., Jensen, T.L., and Fixen, P.E. 2009. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agriculture, Ecosystems and Environment, 133(3-4): 247-266.
37. Gasol, C.M., Gabarrell, X., Anton, A., Rigola, M., Carrasco, J., Ciria, P., Solano, M.L., and Rieradevall, J. 2007. Life cycle assessment of a Brassica carinata bioenergy cropping system in southern Europe. Biomass and Bioenergy, 31(8): 543-555.
38. Taheri-Rad, A.R., Nikkhah, A., Khojastehpour, M., Nourozieh, Sh. 2015. Assessing GHG emissions, and energy and economic analysis of cotton production in the Golestan province. Journal of Agricultural Machinery, 5(2): 428-445.
39. Soltanali, H., Emadi, B., Rohani, A., Khojastehpour, M., Nikkhah , A. 2015. Life cycle assessment modeling of milk production in Iran, Information Processing in Agriculture, 2: 101-108.
40. Shoghi Kalkhoran S., Ghalavand A., Modarres Sanavy S.A.M., Akbari P. 2011. Effect of Nitrogen Fertilizer and Bio Fertilizer Application on Yield and Quality of Sunflower (Helianthus Annuus L.). Iranian Journal of Crop Sciences, 12(4): 467-481.
41. Many, A., Bahar, A., Zeridan, M.S., and Hazayn, M. 2006. Yield and quality of Maize (Zea mays L.) as affected by slow- release nitrogen in newly reclaimed sandy soil. American-Eurasian J. Agric. Environ. Sci., 1(3): 239-242.
42. Marshner, H. 1995. Mineral nutrition of higher plants. Academic Press, London, England. 889 P.
43. Malakouti, M.J., Bybordi, A., Lotfollahi, M., Shahabi, A.A., Siavoshi, K., Vakil, R., Ghaderi, J., Shahabifar Majidi, J., Jafarnajadi, A.R., Dehghani, F., Keshavarz, M.H., Ghasemzadeh, M., Ghanbarpouri, R., Dashadi, M., Babaakbari, M., and Zaynalifard, N. 2008. Comparison of complete and sulfur coated urea fertilizers with pre-plant urea in increasing grain yield and nitrogen use efficiency in wheat. J. Agric. Sci. Technol., 10: 173-183.
44. Jokela, W.E. and Randall, G.W. 1989. Corn Yield and Residual Soil Nitrate as Affected by time and Rate if Nitrogen Application. Agron. J., 81: 720-726.
45. Moll, R.H., E.J. Kamprath and W.A. Jackson. 1982. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron. J., 74:262-264.
46. Tajbakhsh, M. and Pourmirza, A.A. 2003. Cereal Crops. University Jihad Publications, West Azarbaijan, 314p.
47. Mirhaji, H., Khojastehpour, M., Abaspour-fard, M.H., and Mahdavi Shahri, S.M. 2012. Environmental impact study of sugar beet production using life cycle assessment in Khorasan province. Agroecology, 4: 112-120.