بررسی کارایی ساقه گندم در کاهش میزان آمونیاک محلول (NH3)
محورهای موضوعی : آلودگی های محیط زیست (آب، خاک و هوا)احمد محمدی یلسوئی 1 , عبد المجید حاجی مرادلو 2 , محمود ذوقی 3
1 - دانشجوی دکتری تکثیر پرورش آبزیان، دانشگاه علوم کشاورزی و منابع طبیعی گرگان٭ (مسوول مکاتبات)
2 - عضو هیات علمی گروه شیلات، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان
3 - دانشجوی دکتری برنامه ریزی و مدیریت محیط زیست، دانشگاه تهران
کلید واژه: ساقه گندم (کلش), بیوفیلتر, آمونیاک, کپور معمولی, تصفیه بیولوژیکی,
چکیده مقاله :
زمینه و هدف: دنیتریفیکاسیون بیولوژیکی در سیستمهایی که دارای یک بستر مناسب برای جاگزینی باکتری ها هستند، بازده بالاتری نسبت به سیستم های دیگر دارد. عمده مشکل این بسترها، مثل بسترهایی که از انواع پلیمرهای مصنوعی تولید شدهاند، هزینه بالای تولید و مشکلات زیستی آنان است. هدف از این مطالعه استفاده از ساقههای گندم به عنوان یک بستر ارزان قیمت و نیز بررسی کارایی آن بر شانس بقای ماهیان بود. روش بررسی: برای انجام این مطالعه معادل 10% و 5% حجم کل مخازن نگهداری آب (حجم مخازن 240 لیتر) ساقههای گندم (کلش) به آن ها اضافه شد. علاوه بر دو گروه، یک گروه شاهد (فاقد ساقه گندم) نیز انتخاب گردید (سه تیمار با سه تکرار). میزان 10 میلی گرم آمونیاک به همهی مخازن اضافه شد و ابتدا آزمایش، 24، 48، 72 و 96 ساعت پس از افزودن آمونیاک، میزان آن محاسبه گردید. شش عدد ماهی کپور معمولی (Cyprinus carpio) با میانگین وزنی 2/0±8 گرم در مرحله دوم آزمایش به هر مخزن اضافه گردید. تیماربندیها در این مرحله مشابه مرحله قبل بود، منتهی مخازن علاوه بر ساقه گندم حاوی ماهی نیز بودند. میزان تلفات در بازههای زمانی 24، 48، 72 و 96 ساعت پس از اضافه کردن آمونیاک شمارش گردید. هیچگونه غذادهی صورت نگرفت. برای مقایسه دادهها بین تیمارها و هریک به تفکیک در واحد زمان از آنالیز واریانس یک طرفه (One-Way ANOVA) استفاده گردید. مقایسه میانگینها با استفاده از نرم آفزار SPSS از طریق آزمون LSD در سطح اطمینان 05/0 صورت گرفت. یافتهها: نتایج نشان داد میزان آمونیاک در تیمارها تفاوت معناداری نسبت به گروه شاهد دارد (05/0>p). بین میزان آمونیاک در تیمارها در مقایسه با یکدیگر تفاوت معناداری وجود داشت (05/0>p). بیشترین میزان کاهش آمونیاک مربوط به تیمار 10% ساقه گندم بود. کمترین میزان تلفات ماهیان در مرحله دوم آزمایش مربوط به تیمار 10% ساقه گندم با مجموع 2 عدد بود؛ هم چنین شاهد (بدون ساقه گندم) بیشترین تلفات ماهیان را داشت(15 عدد). بحث و نتیجهگیری: نتایج مطالعه ما نشان داد چرخه دنیتروفیکاسیون در مخازنی که 10% حجمشان به کاه گندم اختصاص داده شده بود تا 32 برابر، بازده بالاتری نسبت به مخازن فاقد کاه گندم داشت. مطالعه حاضر نشان داد استفاده از کاه گندم می تواند تاثیر به سزایی در افزایش شانس بقای ماهیان در شرایط فوق حاد آمونیاک بگذارد. به شکلی که تلفات در مخازن 10% ساقه گندم، تنها 13% تلفات مخازن فاقد ساقه گندم بود.
Introduction: Biological nitrification, in the system that has a proper substrate to replace bacteria is more efficient than other systems. The major problem substrates, such as substrates that are made of synthetic polymers are their high cost of production and environmental problems. The aim of this study using wheat stalks as a substrate cost as well as review performance on the survival of fish. Material and Methods: To do this, the study added 10% and 5% of the word water storage tank size (240 liters size) of wheat stalks (starch). Control over two groups, one control (no wheat stem) control group (three treatments with three replications). You can calculate this student 10, best, most, 24, 48, 72 and 96 hours after adding ammonia. A weight of 0.28 g is added to each tank in the test volunteer. Treatments at this stage observe pre-budget law, leading to limited reservoirs of wheat stalks containing mosques. Mortality rates were counted 24, 48, 72 and 96 hours after the addition of ammonia. There was no food. One-way ANOVA was used to compare data between treatments and each one by time. The means were compared by SPSS software using LSD test at 0.05 level of confidence. Results and Discussion: The results showed that the ammonia treatment is significantly different than the control group (p > 0/05). The amount of ammonia in treated compared with each other, there was a significant difference (p > 0/05). Greatest amount of ammonia reduced to 10% of the wheat stalk; Lowest fish mortality rates in the second stage of the treatment, 10% of wheat stem (2 number), as well as the control group (without wheat) had the highest mortality of fish (15 number). Results of our study showed that nitrification cycle in the reservoirs that 10% of the volume is dedicated to wheat straw up to 32 times more efficient than the other tanks (tanks without wheat). Well as present study showed that the use the wheat stalks can have a significant role in the increasing the chance of survival of fish, in the face of hyper-acute ammonia.
- Soutar, R., 2004. The welfare of farmed fish-recent developments. Study Veterans Journal, Vol. 14, pp. 17-21.
- Bennison, S., 2004. Animal welfare in the Australian aquaculture industry. Welfare underwater.
- Conte, F.S., 2004. Stress and the welfare of cultured fish. Applied Animal Behavior Science, Vol. 86, pp. 205-223.
- Timmons, J., Fred, S.B., 2002. Recirculation Aquaculture Systems. NRAC publication. No. 01-02.
- Thurston, R., Phillips R.G., Russo, C.R., 1981. Increased toxicity of ammonia to rainbow trout (Salmogairdneri) resulting from reduced concentrations of dissolved oxygen. Canada Journal Fish Aquatic Science, Vol. 38, pp. 983- 988.
- Svobodova, Z., Lioyd, R., Machova J., Vykusova B. Water quality and fish health. EIFAC Technical Paper.No. 54. Rome, Fao. 1993. 59p.
- Martyniuk, S.,Martyniuk, M. 2004. Occurrence of Azotoacter sp. in some Polish soils. Polish Journal Environment Study, Vol. 12, pp. 371-374.
- Rabah, F.K., Dahab, M.F., 2004. Nitrate removal characteristics of high performance fluidized - bed biofilm reactors. Water Research, Vol. 38, pp.3719- 3728.
- Tchobanoglous G., Burton F.L., Stensel H.D., 2003.wastewater engineering: Treatment and reuse. Fourth edition, Published by McGraw-Hill Companies, Inc. No. York, NY 10020. 1771p.
- Willie Jones B.S., Philip W.W. and Thomas M.L. 2007. Wood chips and wheat straw as alternative biofilter media for denitrification reactors treating aquaculture an other wastewaters with high nitrate concentrations. Aquaculture Engineering. Vol. 37, Pp. 222-233.
- Foglar, L., Sipos, L., Bolf, N., 2007. Nitrate removal with bacterial cells attached to quartz sand and zeolite from salty waste water. World Journal Microbiology Biotechnology, Vol. 23 (11), pp. 1595- 1603.
- Rajapakes, J.P., Scott, J.E., 1999. Denitrification with natural gas and various new growth media. Water Research, Vol. 33, pp. 3723- 3734.
- Saliling, W.J.B., Westerman P.W., Losordo, T.M., 2007. Wood chips and wheat straw as alternative biofilter media for denitrification reactors treating aquaculture and other wastewaters with high nitrate concentration. Aquaculture Engineering, Vol. 37 (3), pp. 222- 233.
- Soares, M.I.M., Abeliovich, A., 1998. Wheat straw as substrate for denitrification. Water Res. 32 (12), 3790–3794.
- Aslan, U., Turkman, A., 2005. Combined biological removal of nitrate and pesticides using wheat straw as substrate. Process Biochemistry, Vol. 40, pp. 935- 943.
- Lowengart, A., Diab, S., Kochba, M., Avnimelech, Y., 1993. Development of a biofilter for turbid and nitrogen-rich irrigation water. A: Organic carbon degradation and nitrogen removal processes. Bioresource Technology, Vol. 44, pp. 131- 135.
- Naji, T., Khara, H., Rostami, M., Pejman, A.N., 2009. Evaluate toxicity effects of Ammonia on liver tissue of common Carp (Cyprinus carpio). Journal of Environmental Science and Technology, Vol. 1 (11), pp. 131-148. (in Persian)
- Cang, Y., Roberts, D.J., Clifford, D.A., 2004. Development of cultures capable of reduce in perchlorate and nitrate in high salt solutions. Water Research, Vol. 38, pp. 3322- 3330.
- Ghodini, H., Rezaee, A., Beyranvand, F., Jahanbani, N., 2012. Nitrate removal from water using denitrifier-bacteria immobilized on activated carbon at fluidized-bed reactor. Yafte, 2012; 14 (3), pp. 15-27. (in Persian)
- Robertson, W.D., Bloowes, D.W., Ptacek, C.J, Cherry J.A., 2000. Long-term performance of in situ reactive barriers for nitrate remediation. Groundwater, Vol. 38 (5), pp. 689- 695.
- Volokita, M., Belkin, S., Abeliovich, A., Soares, M., 1996. Biological denitrification of drinking water using newspaper. Water Research, Vol. 30 (4), pp. 364- 376.
- Kim, H.E., Seagren A., Davis, A.P., 2003. Engineered bioretention for removal of nitrate from stormwater runoff. Water Environment Research, Vol, 75, pp. 355- 367.
_||_
- Soutar, R., 2004. The welfare of farmed fish-recent developments. Study Veterans Journal, Vol. 14, pp. 17-21.
- Bennison, S., 2004. Animal welfare in the Australian aquaculture industry. Welfare underwater.
- Conte, F.S., 2004. Stress and the welfare of cultured fish. Applied Animal Behavior Science, Vol. 86, pp. 205-223.
- Timmons, J., Fred, S.B., 2002. Recirculation Aquaculture Systems. NRAC publication. No. 01-02.
- Thurston, R., Phillips R.G., Russo, C.R., 1981. Increased toxicity of ammonia to rainbow trout (Salmogairdneri) resulting from reduced concentrations of dissolved oxygen. Canada Journal Fish Aquatic Science, Vol. 38, pp. 983- 988.
- Svobodova, Z., Lioyd, R., Machova J., Vykusova B. Water quality and fish health. EIFAC Technical Paper.No. 54. Rome, Fao. 1993. 59p.
- Martyniuk, S.,Martyniuk, M. 2004. Occurrence of Azotoacter sp. in some Polish soils. Polish Journal Environment Study, Vol. 12, pp. 371-374.
- Rabah, F.K., Dahab, M.F., 2004. Nitrate removal characteristics of high performance fluidized - bed biofilm reactors. Water Research, Vol. 38, pp.3719- 3728.
- Tchobanoglous G., Burton F.L., Stensel H.D., 2003.wastewater engineering: Treatment and reuse. Fourth edition, Published by McGraw-Hill Companies, Inc. No. York, NY 10020. 1771p.
- Willie Jones B.S., Philip W.W. and Thomas M.L. 2007. Wood chips and wheat straw as alternative biofilter media for denitrification reactors treating aquaculture an other wastewaters with high nitrate concentrations. Aquaculture Engineering. Vol. 37, Pp. 222-233.
- Foglar, L., Sipos, L., Bolf, N., 2007. Nitrate removal with bacterial cells attached to quartz sand and zeolite from salty waste water. World Journal Microbiology Biotechnology, Vol. 23 (11), pp. 1595- 1603.
- Rajapakes, J.P., Scott, J.E., 1999. Denitrification with natural gas and various new growth media. Water Research, Vol. 33, pp. 3723- 3734.
- Saliling, W.J.B., Westerman P.W., Losordo, T.M., 2007. Wood chips and wheat straw as alternative biofilter media for denitrification reactors treating aquaculture and other wastewaters with high nitrate concentration. Aquaculture Engineering, Vol. 37 (3), pp. 222- 233.
- Soares, M.I.M., Abeliovich, A., 1998. Wheat straw as substrate for denitrification. Water Res. 32 (12), 3790–3794.
- Aslan, U., Turkman, A., 2005. Combined biological removal of nitrate and pesticides using wheat straw as substrate. Process Biochemistry, Vol. 40, pp. 935- 943.
- Lowengart, A., Diab, S., Kochba, M., Avnimelech, Y., 1993. Development of a biofilter for turbid and nitrogen-rich irrigation water. A: Organic carbon degradation and nitrogen removal processes. Bioresource Technology, Vol. 44, pp. 131- 135.
- Naji, T., Khara, H., Rostami, M., Pejman, A.N., 2009. Evaluate toxicity effects of Ammonia on liver tissue of common Carp (Cyprinus carpio). Journal of Environmental Science and Technology, Vol. 1 (11), pp. 131-148. (in Persian)
- Cang, Y., Roberts, D.J., Clifford, D.A., 2004. Development of cultures capable of reduce in perchlorate and nitrate in high salt solutions. Water Research, Vol. 38, pp. 3322- 3330.
- Ghodini, H., Rezaee, A., Beyranvand, F., Jahanbani, N., 2012. Nitrate removal from water using denitrifier-bacteria immobilized on activated carbon at fluidized-bed reactor. Yafte, 2012; 14 (3), pp. 15-27. (in Persian)
- Robertson, W.D., Bloowes, D.W., Ptacek, C.J, Cherry J.A., 2000. Long-term performance of in situ reactive barriers for nitrate remediation. Groundwater, Vol. 38 (5), pp. 689- 695.
- Volokita, M., Belkin, S., Abeliovich, A., Soares, M., 1996. Biological denitrification of drinking water using newspaper. Water Research, Vol. 30 (4), pp. 364- 376.
- Kim, H.E., Seagren A., Davis, A.P., 2003. Engineered bioretention for removal of nitrate from stormwater runoff. Water Environment Research, Vol, 75, pp. 355- 367.