بررسی حذف سفالکسین از محیطهای آبی توسط نانوذرات روی سازگار شده بر کربن فعال مغناطیسی شده حاصل از پسماند برگهای آلوئهورا
محورهای موضوعی : آلودگی محیط زیست (آب و فاضلاب)رباب صمدیار 1 , سیده هدی رحمتی 2 * , همایون احمدپناهی 3 , امیرحسام حسنی 4
1 - گروه مهندسی محیط زیست، واحد علوم تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - گروه مهندسی محیط زیست، واحد علوم تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
3 - گروه شیمی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران
4 - گروه مهندسی محیط زیست، واحد علوم تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: حذف سفالکسین, جذب, آلوئه ورا, کربن فعال, نانوکامپوزیت.,
چکیده مقاله :
زمینه و هدف: از اوایل دهه 1940، آنتی بیوتیکها به طور گسترده برای درمان و پیشگیری در انسان و حیوانات مورد استفاده قرار گرفته اند. استفاده بیرویه از آنتی بیوتیکها از یک سو و مقاومت آنتی بیوتیکها در برابر تجزیه از سوی دیگر باعث تجمع آنها در محیط زیست خصوص منابع آبی شده اند که موضوعی بسیار نگران کننده در سراسر جهان است. بنابراین، حذف آسان و سریع آنها با قابلیت بالا یک نیاز اساسی برای سلامت جامعه جهانی است. پژوهش حاضر به منظور طراحی یک جاذب جدید و کارامد بر پایه کربن فعال برگرفته شده از میوه آلوئه ورا (AVAC) به منظور حذف سفالکسین از محیط آبی توسعه یافته است.
روش بررسی: در این تحقیق AVAC به عنوان یک جاذب قابل اتکا، ابتدا با نانوذرات اکسید روی از طریق اصلاح سطح عاملدار شده و سپس با استفاده از یونهای آهن دو و سه ظرفیتی مغناطیسی شده است. سنتز صحیح نانوکامپوزیت AVAC/ZnO/Fe3O4 با استفاده از آنالیزهای FTIR، VSM، XRD و BET و FE-SEM مورد ارزیابی قرار گرفته است. متغیرهای موثر بر حذف سفالکسین شامل دوز جاذب، pH، زمان تماس و غلظت آلاینده در 6 ماهه اول سال 1402 مورد بررسی قرار گرفته است.
یافته ها: نتایج نشان داد درصد حذف سفالکسین در شرایط بهینه (3=pH، دوز جاذب 1/5 گرم، زمان واکنش 60 دقیقه و 5 میلی گرم در لیتر سفالکسین)، 96 درصد گزارش شده است. علاوه بر آن، فرآیند جذب از سینتیک مدل شبه مرتبه دوم (99/0R2=) پیروی کرد و با مدل ایزوترم لانگمویر سازگار بوده است.
بحث و نتیجه گیری: نتایج نشان داد نانوکامپوزیت معناطیسی سنتز شده AVAC/ZnO/Fe3O4 به عنوان یک جاذب زیست تخریب پذیر، ارزان قیمت و سازگار با محیط زیست برای حذف آنتی بیوتیک سفالکسین از محیط آبی میتواند مورد استفاده قرار گیرد.
Background and objective: Since the early 1940s, antibiotics have been widely used for treatment and prevention in humans and animals. The excessive use of antibiotics on the one hand and the resistance of antibiotics to decomposition on the other hand have caused their accumulation in the environment, especially in water sources, which is a very worrying issue all over the world. Therefore, their quick and easy removal with high efficiency is a basic need for the health of the global community.
Material and Methodology: The present study was developed in order to design a new and efficient adsorbent based on activated carbon derived from aloe vera fruit (AVAC) in order to remove cephalexin from the water environment. As a reliable adsorbent, AVAC is first functionalized with zinc oxide nanoparticles through surface modification and then magnetized using Fe 2+ and Fe 3+ ions. The correct synthesis of AVAC/ZnO/Fe3O4 nanocomposite was confirmed using FTIR, VSM, XRD, BET and FE-SEM analyses. The effective parameters on cephalexin removal including adsorbent dose, pH, contact time and pollutant concentration have been investigated.
Findings: The results showed that the removal percentage of cephalexin under optimal conditions (pH = 3, adsorbent dose 1.5 g, reaction time = 60 minutes and 5 mg/liter of cephalexin) was reported to be 96%. In addition, the absorption process followed the kinetics of the pseudo-second order model (R=0.99) and was consistent with the Langmuir isotherm model.
Discussion and conclusion: The above research showed that the synthesized AVAC/ZnO/Fe3O4 nanocomposite can be used as a biodegradable, cheap and environmentally friendly adsorbent to remove cephalexin antibiotic from the water environment.
1. D. Mangla, A. Sharma, S. Ikram, others, Critical review on adsorptive removal of antibiotics: Present situation, challenges and future perspective, J. Hazard. Mater. 425 (2022) 127946.
2. P. Grenni, V. Ancona, A.B. Caracciolo, Ecological effects of antibiotics on natural ecosystems: A review, Microchem. J. 136 (2018) 25–39.
3. Y. Yang, G. Ren, W. Yang, X. Qin, D. Gu, Z. Liang, D.-Y. Guo, P. Qinhe, A new MOF-based fluorescent sensor for the detection of nitrofuran antibiotics, Polyhedron 194 (2021) 114923.
4. J. Liu, D. Zhou, Z. Xu, S. Zheng, Adsorptive removal of pharmaceutical antibiotics from aqueous solution by porous covalent triazine frameworks, Environ. Pollut. 226 (2017) 379–384.
5. P. Gholami, A. Khataee, R.D.C. Soltani, L. Dinpazhoh, A. Bhatnagar, Photocatalytic degradation of gemifloxacin antibiotic using Zn-Co-LDH@ biochar nanocomposite, J. Hazard. Mater. 382 (2020) 121070.
6. D.T. Sponza, P. Demirden, Treatability of sulfamerazine in sequential upflow anaerobic sludge blanket reactor (UASB)/completely stirred tank reactor (CSTR) processes, Sep. Purif. Technol. 56 (2007) 108–117.
7. R. Andreozzi, M. Canterino, R. Marotta, N. Paxeus, Antibiotic removal from wastewaters: the ozonation of amoxicillin, J. Hazard. Mater. 122 (2005) 243–250.
8. I. Koyuncu, O.A. Arikan, M.R. Wiesner, C. Rice, Removal of hormones and antibiotics by nanofiltration membranes, J. Memb. Sci. 309 (2008) 94–101.
9. Z.-P. Xing, D.-Z. Sun, Treatment of antibiotic fermentation wastewater by combined polyferric sulfate coagulation, Fenton and sedimentation process, J. Hazard. Mater. 168 (2009) 1264–1268.
10. T.-H. Dao, T.-Q.-M. Vu, N.-T. Nguyen, T.-T. Pham, T.-L. Nguyen, S. Yusa, T.-D. Pham, Adsorption characteristics of synthesized polyelectrolytes onto alumina nanoparticles and their application in antibiotic removal, Langmuir 36 (2020) 13001–13011.
11. J. Hirose, F. Kondo, T. Nakano, T. Kobayashi, N. Hiro, Y. Ando, H. Takenaka, K. Sano, Inactivation of antineoplastics in clinical wastewater by electrolysis, Chemosphere 60 (2005) 1018–1024.
12. A. Ayati, M.N. Shahrak, B. Tanhaei, M. Sillanpää, Emerging adsorptive removal of azo dye by metal--organic frameworks, Chemosphere 160 (2016) 30–44.
13. A. Kiani, H. Alinezhad, R. Sadatmadani, Copper nanoparticles supported on magnetic functionalized chicken feather-derived activated carbon/metal--organic frameworks nanocomposite: As an efficient adsorbent for the removal of methylene blue and a unique heterogeneous catalyst for the synthesis o, Appl. Organomet. Chem. 37 (2023) e7224.
14. S. Dhaka, R. Kumar, A. Deep, M.B. Kurade, S.-W. Ji, B.-H. Jeon, Metal--organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments, Coord. Chem. Rev. 380 (2019) 330–352.
15. H. Xue, X. Wang, Q. Xu, F. Dhaouadi, L. Sellaoui, M.K. Seliem, A. Ben Lamine, H. Belmabrouk, A. Bajahzar, A. Bonilla-Petriciolet, others, Adsorption of methylene blue from aqueous solution on activated carbons and composite prepared from an agricultural waste biomass: A comparative study by experimental and advanced modeling analysis, Chem. Eng. J. 430 (2022) 132801.
16. S. Mashhadi, H. Javadian, M. Ghasemi, T.A. Saleh, V.K. Gupta, Microwave-induced H2SO4 activation of activated carbon derived from rice agricultural wastes for sorption of methylene blue from aqueous solution, Desalin. Water Treat. 57 (2016) 21091–21104.
17. G. Crini, E. Lichtfouse, L.D. Wilson, N. Morin-Crini, Green adsorbents for pollutant removal, Environ. Chem. Sustain. World 18 (2018) 23–71.
18. D.R. Lobato-Peralta, E. Duque-Brito, A. Ayala-Cortés, D.M. Arias, A. Longoria, A.K. Cuentas-Gallegos, P.J. Sebastian, P.U. Okoye, Advances in activated carbon modification, surface heteroatom configuration, reactor strategies, and regeneration methods for enhanced wastewater treatment, J. Environ. Chem.
Eng. 9 (2021) 105626.
19. S.J. Rajasekaran, V. Raghavan, Facile synthesis of activated carbon derived from Eucalyptus globulus seed as efficient electrode material for supercapacitors, Diam. Relat. Mater. 109 (2020) 108038.
20. K.P. Singh, A. Malik, S. Sinha, P. Ojha, Liquid-phase adsorption of phenols using activated carbons derived from agricultural waste material, J. Hazard. Mater. 150 (2008) 626–641.
21. F. Hashemzadeh, M. Ariannezhad, S.H. Derakhshandeh, Evaluation of Cephalexin and Amoxicillin removal from aqueous media using activated carbon produced from Aloe vera leaf waste, Chem. Phys. Lett. 800 (2022) 139656.
22. A. Dargahi, M.R. Samarghandi, A. Shabanloo, M.M. Mahmoudi, H.Z. Nasab, Statistical modeling of phenolic compounds adsorption onto low-cost adsorbent prepared from aloe vera leaves wastes using CCD-RSM optimization: effect of parameters, isotherm, and kinetic studies, Biomass Convers. Biorefinery (2021) 1–15.
23. M. El-Azazy, S.N. Dimassi, A.S. El-Shafie, A.A. Issa, Bio-waste Aloe vera leaves as an efficient adsorbent for titan yellow from wastewater: Structuring of a novel adsorbent using Plackett-Burman factorial design, Appl. Sci. 9 (2019) 4856.
24. A.A. Ebrahim, S.S. Elnesr, M.A.A. Abdel-Mageed, M.M.M. Aly, Nutritional significance of aloe vera (Aloe barbadensis Miller) and its beneficial impact on poultry, Worlds. Poult. Sci. J. 76 (2020) 803–814.
25. F. Hashemzadeh, S.H. Derakhshandeh, M.M. Soori, F. Khedri, S. Rajabi, Bisphenol A adsorption using modified aloe vera leaf-wastes derived bio-sorbents from aqueous solution: kinetic, isotherm, and thermodynamic studies, Int. J. Environ. Health Res. 34 (2024) 2031–2051.
26. M.A.K.M. Hanafiah, S.Z.M. Jamaludin, K. Khalid, S. Ibrahim, Methylene blue adsorption on Aloe vera rind powder: Kinetics, Isotherm and Mechanisms, Nat. Environ. Pollut. Technol. 17 (2018) 1055–1064.
27. D.A. Giannakoudakis, A. Hosseini-Bandegharaei, P. Tsafrakidou, K.S. Triantafyllidis, M. Kornaros, I. Anastopoulos, Aloe vera waste biomass-based adsorbents for the removal of aquatic pollutants: A review, J. Environ. Manage. 227 (2018) 354–364.
28. R. Malik, S. Lata, S. Singhal, Removal of heavy metal from wastewater by the use of modified aloe vera leaf powder, Int J Basic Appl Chem Sci 5 (2015) 6–17.
29. P. Liu, D. Chen, J. Shi, Chemical Constituents, Biological Activity and Agricultural Cultivation of Aloe vera., Asian J. Chem. 25 (2013).
30. S. Alhan, M. Nehra, N. Dilbaghi, N.K. Singhal, K.-H. Kim, S. Kumar, Potential use of ZnO@ activated carbon nanocomposites for the adsorptive removal of Cd2+ ions in aqueous solutions, Environ. Res. 173 (2019) 411–418.
31. M. Zbair, Z. Anfar, H.A. Ahsaine, N. El Alem, M. Ezahri, Acridine orange adsorption by zinc oxide/almond shell activated carbon composite: operational factors, mechanism and performance optimization using central composite design and surface modeling, J. Environ. Manage. 206 (2018) 383–397.
32. V.H.T. Thi, B.-K. Lee, Great improvement on tetracycline removal using ZnO rod-activated carbon fiber composite prepared with a facile microwave method, J. Hazard. Mater. 324 (2017) 329–339.
33. N. Nasseh, F.S. Arghavan, S. Rodriguez-Couto, A.H. Panahi, M. Esmati, T.J. A-Musawi, Preparation of activated carbon@ZnO composite and its application as a novel catalyst in catalytic ozonation process for metronidazole degradation, Adv. Powder Technol. 31 (2020) 875–885.
34. N. Magesh, A.A. Renita, R. Siva, N. Harirajan, A. Santhosh, Adsorption behavior of fluoroquinolone (ciprofloxacin) using zinc oxide impregnated activated carbon prepared from jack fruit peel: Kinetics and isotherm studies, Chemosphere 290 (2022) 133227.
35. R.-S. Juang, Y.-C. Yei, C.-S. Liao, K.-S. Lin, H.-C. Lu, S.-F. Wang, A.-C. Sun, Synthesis of magnetic Fe3O4/activated carbon nanocomposites with high surface area as recoverable adsorbents, J. Taiwan Inst. Chem. Eng. 90 (2018) 51–60.
36. S.M. Devi, A. Nivetha, I. Prabha, Superparamagnetic properties and significant applications of iron oxide nanoparticles for astonishing efficacy—a review, J. Supercond. Nov. Magn. 32 (2019) 127–144.
37. M. Leili, M. Fazlzadeh, A. Bhatnagar, Green synthesis of nano-zero-valent iron from Nettle and Thyme leaf extracts and their application for the removal of cephalexin antibiotic from aqueous solutions, Environ. Technol. 39 (2018) 1158–1172.
38. A. Ray, S. Ghosh, Chemometrics for functional group distribution, and UV absorption potential of Aloe vera L. Gel at different growth periods, Mater. Today Proc. 5 (2018) 22245–22253.
39. A.S. Yasin, D. hyun Kim, K. Lee, One-pot synthesis of activated carbon decorated with ZnO nanoparticles for capacitive deionization application, J. Alloys Compd. 870 (2021) 159422.
40. X. Liu, S. Zhang, H. Luo, Y. Zhang, Q. Xu, Z. Zhang, H. Xu, Z. Wang, Biomass activated carbon supported with high crystallinity and dispersion Fe3O4 nanoparticle for preconcentration and effective degradation of methylene blue, J. Taiwan Inst. Chem. Eng. 81 (2017) 265–274.
41. M.S. Yadav, N. Singh, S.M. Bobade, Zinc oxide nanoparticles and activated charcoal-based nanocomposite electrode for supercapacitor application, Ionics (Kiel). 24 (2018) 3611–3630.
42. J. Cao, W. Fu, H. Yang, Q. Yu, Y. Zhang, S. Wang, H. Zhao, Y. Sui, X. Zhou, W. Zhao, others, Fabrication, characterization and application in electromagnetic wave absorption of flower-like ZnO/Fe3O4 nanocomposites, Mater. Sci. Eng. B 175 (2010) 56–59.
43. P. Nazari, N. Askari, S. Rahman Setayesh, Oxidation-precipitation of magnetic Fe3O4/AC nanocomposite as a heterogeneous catalyst for electro-Fenton treatment, Chem. Eng. Commun. 207 (2020) 665–675.
44. M.Y. Nassar, I.S. Ahmed, H.S. Hendy, A facile one-pot hydrothermal synthesis of hematite ($α$-Fe2O3) nanostructures and cephalexin antibiotic sorptive removal from polluted aqueous media, J. Mol. Liq. 271 (2018) 844–856.
45. M.-S. Miao, Q. Liu, L. Shu, Z. Wang, Y.-Z. Liu, Q. Kong, Removal of cephalexin from effluent by activated carbon prepared from alligator weed: Kinetics, isotherms, and thermodynamic analyses, Process Saf. Environ. Prot. 104 (2016) 481–489.
46. T. Wang, X. Pan, W. Ben, J. Wang, P. Hou, Z. Qiang, Adsorptive removal of antibiotics from water using magnetic ion exchange resin, J. Environ. Sci. 52 (2017) 111–117.
47. F. Torki, H. Faghihian, Sunlight-assisted decomposition of cephalexin by novel synthesized NiS-PPY-Fe3O4 nanophotocatalyst, J. Photochem. Photobiol. A Chem. 338 (2017) 49–59.
48. A. Al-Gheethi, E. Noman, R.M.S.R. Mohamed, B. Talip, D.-V.N. Vo, H.A. Algaifi, Cephalexin removal by a novel Cu--Zn bionanocomposite biosynthesized in secondary metabolic products of Aspergillus arenarioides EAN603 with pumpkin peels medium: Optimization, kinetic and artificial neural network models, J. Hazard. Mater. 419 (2021) 126500.
49. A.H. Jawad, A.S. Abdulhameed, A. Reghioua, Z.M. Yaseen, Zwitterion composite chitosan-epichlorohydrin/zeolite for adsorption of methylene blue and reactive red 120 dyes, Int. J. Biol. Macromol. 163 (2020) 756–765.
50. D. Wang, F. Jia, H. Wang, F. Chen, Y. Fang, W. Dong, G. Zeng, X. Li, Q. Yang, X. Yuan, Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs, J. Colloid Interface Sci. 519 (2018) 273–284.
51. F. Temel, M. Turkyilmaz, S. Kucukcongar, Removal of methylene blue from aqueous solutions by silica gel supported calix [4] arene cage: Investigation of adsorption properties, Eur. Polym. J. 125 (2020) 109540.
52. H. Liu, W. Liu, J. Zhang, C. Zhang, L. Ren, Y. Li, Removal of cephalexin from aqueous solutions by original and Cu (II)/Fe (III) impregnated activated carbons developed from lotus stalks Kinetics and equilibrium studies, J. Hazard. Mater. 185 (2011) 1528–1535.
53. Hashemzadeh F, Ariannezhad M, Derakhshandeh SH. Sustainable removal of tetracycline and paracetamol from water using magnetic activated carbon derived from pine fruit waste. Scientific Reports. 2024 Jul 16;14(1):16346.
54. R. Khosravi, A. Zarei, M. Heidari, A. Ahmadfazeli, M. Vosughi, M. Fazlzadeh, Application of ZnO and TiO 2 nanoparticles coated onto montmorillonite in the presence of H 2 O 2 for efficient removal of cephalexin from aqueous solutions, Korean J. Chem. Eng. 35 (2018) 1000–1008.
55. A. Mohseni-Bandpi, T.J. Al-Musawi, E. Ghahramani, M. Zarrabi, S. Mohebi, S.A. Vahed, Improvement of zeolite adsorption capacity for cephalexin by coating with magnetic Fe3O4 nanoparticles, J. Mol. Liq. 218 (2016) 615–624.
56. F.H. Solukluei, A.H. Hassani, E. Moniri, H.A. Panahi, R.H.S.M. Shirazi, Novel three-dimensional graphene oxide modified with hyper-branched dendrimer for removal of cephalexin from aqueous solutions by applying Taguchi statistical method, Inorg. Chem. Commun. 148 (2023) 110308.