برنامه پاسخگویی بار شبکه هوشمند مبتنی بر شارژ ماشین های برقی با استفاده از الگوریتم تئوری بازی
محورهای موضوعی : مهندسی برق ( الکترونیک، مخابرات، قدرت، کنترل)
مژده حیدریان اصل
1
*
,
حسن استوار
2
1 - گروه مهندسی برق، واحد دشتستان، دانشگاه آزاد اسلامی، دشتستان، ایران
2 - استادیار، گروه مهندسی برق، واحد دشتستان، دانشگاه آزاد اسلامی، دشتستان، ایران
کلید واژه: ریزشبکه هوشمند , سلول خورشیدی , الگوریتم تئوری بازی , تولید ریزشبکه,
چکیده مقاله :
از آنجا که شارژ خودروهای برقی به عنوان یکی از راهکارهای بنیادی به منظور مدیریت فنی و اقتصادی در شبکه توزیع برق میباشد، لذا در پژوهش جاری، مدلی جهت بهرهبرداری از یک ریزشبکه هوشمند شامل تولیدکنندههایی مانند سلولهای فتوولتاییک، توربین بادی، سیستم ذخیره کننده انرژی و مصرفکنندههای خودرو برقی ارائه شده است. ریز شبکه پیشنهادی منجر به کاهش تلفات، کاهش پیک بار شبکه و همچنین کاهش هزینه های شارژ میگردد. این ریزشبکه در دو حالت طراحی شده است، در مرحله اول بهصورت کامل از شبکه سراسری ایزوله است. در این مدلسازی برای عدم قطعیتهای تولید بادی، تولید خورشیدی و امکان اعمال کنترل فیزیکی تجهیزات، از میانگین دادهای تابشی و وزشی منطقه موردنظر استفاده شده است. در مرحله دوم برنامه بهینهسازی پاسخگویی تقاضا مبتنی بر الگوریتم تئوری بازی برای ریزشبکه هوشمند متصل به شبکه سراسری در قالب دو پیشنهاد بارزدایی و تولید ریزشبکه برای کاهش توان بار در مسئله طراحی شده است. در راستای صحت سنجی روش پیشنهادی، دو مدلسازی مختلف ریزشبکه هوشمند در نرمافزارهای MATLAB و GAMS صورت گرفته است. با توجه مقدار هزینهی انرژی بدست آمده در حالت ریزشبکه مستقل، مقدار انرژی انتظاری تأمین نشده به میزان 18 درصد کاهش را نشان داد. در حالت ریزشبکه متصل به شبکه سراسری ضمن بهبود عملکرد انرژی تامین نشده شبکه، کاهش آلودگی واحدهای تولید بعد از بهینهسازی حاصل گردید. در حالت کلی نتایج هر دو بررسی حاکی از برتری روشهای پیشنهادی در مقابل دیگر روشهای مرسوم است.
Since the charging of electric vehicles is one of the basic solutions for technical and economic management in the electricity distribution network, therefore, in the current research, a model for operating a smart microgrid including producers such as photovoltaic cells, wind turbine, energy storage system and Electric vehicle consumers are presented. The proposed micro-grid leads to reduction of losses, reduction of network peak load and also reduction of charging costs. This microgrid is designed in two modes, in the first stage it is completely isolated from the national network. In this modeling, for the uncertainties of wind production, solar production and the possibility of applying physical control of the equipment, the average radiation and wind data of the target area have been used. In the second stage, the demand response optimization program based on the game theory algorithm for the smart microgrid connected to the national network has been designed in the form of two proposals for load shedding and microgrid generation to reduce the load capacity in the problem. In order to validate the proposed method, two different modeling of smart microgrids have been done in MATLAB and GAMS software. According to the amount of energy cost obtained in the independent microgrid mode, the expected amount of unsupplied energy showed a decrease of 18%. In the case of a microgrid connected to the national grid, while improving the performance of the unsupplied energy of the grid, reducing the pollution of production units was achieved after optimization. In general, the results of both surveys indicate the superiority of the proposed methods over other conventional methods. |
[1] V. Z. Gjorgievski, N. Markovska, A., bazi, N. Duić, " The potential of power-to-heat demand response to improve the flexibility of the energy system: An empirical review". Renewable and Sustainable Energy Reviews, 2021, 138, 110489.
[2]
P. Palensky and D. Dietrich, "Demand Side Management: Demand Response, Intelligent Energy Systems, and Smart Loads," in IEEE Transactions on Industrial Informatics, vol. 7, 2011, pp. 381-388. [3]
S. Maharjan, Q. Zhu, Y. Zhang, S. Gjessing, T. Başar, "Demand Response Management in the Smart Grid in a Large Population Regime", in IEEE Trans. on Smart Grid, v. 7, 2015, pp. 189-199. [4] M., Noori, O., Tatari, "Development of an agent-based model for regional market penetration projections of electric vehicles in the United States", 2016, Energy, 96, pp. 215-230
. [5] J., Wang, G.R., Bharati, S., Paudyal, O., Ceylan, B. P., Bhattarai, K. S., Myers, "Coordinated electric vehicle charging with reactive power support to distribution grids". IEEE Transactions on Industrial Informatics, 2018, 15(1), pp. 54-63.
[6] K., Szinai, Julia et al. "Reduced grid operating costs and renewable energy curtailment with electric vehicle charge management" Energy Policy 136 (2020): 111051
. [7] M., Ghahramani, M., Nazari-Heris, K., Zare, B., Mohammadi-ivatloo, "Optimal Energy and Reserve Management of the Electric Vehicles Aggregator in Electrical Energy Networks Considering Distributed Energy Sources and Demand Side Management" Electric Vehicles in Energy Systems. Springer, Cham, 2020, pp. 211-231
. [8] H., Ren, A., Zhang, F., Wang, X., Yan, Y., Li, N., Duić, J.P., Catalão, "Optimal scheduling of an EV aggregator for demand response considering triple level benefits of three-parties." International Journal of Electrical Power & Energy Systems 125 (2021): 106447
. [9] M.L., Tuballa, M.L., Abundo, "A review of the development of smart grid technologies". Renew. Sustain. Energy Rev. 2016, 59, pp., 710–725
. [10] L., Michael, O., Aslam, B., Foster, D., Kathan, J., Kwok, L., Medearis, R., Palmer, P., Sporborg, M., Tita, "Assessment of demand response and advanced metering". Fed. Energy Regul. Comm. Tech Rep 2013
. [11] US Department of Energy, “Benefits of demand response in electricity markets and recommendations for achieving them”, Report to the United States Congress, Feb. 2006
. [12] P., Teimourzadeh Baboli, M. P., Moghaddam, “Allocation of network- driven load-management measures using multiattribute decision making”, IEEE Transactions on Power Delivery, vol. 25, July 2010, pp. 1839-1845
. [13] S., Korotunov, G., Tabunshchyk, V., Okhmak. "Genetic algorithms as an optimization approach for managing electric vehicles charging in the smart grid." CMIS. 2020, pp. 184-198
. [14]
Elia.be. 2021. Elia: Belgian's Electricity System Operator. [online] Available at:
. [16] T., Mazhar, R. N., Asif, M. A., Malik, M. A., Nadeem, I., Haq, M., Iqbal, S., Ashraf, "Electric vehicle charging system in the smart grid using different machine learning methods. Sustainability", 2023, 15(3), 2603
. [17] زارعی ابراهیم، محمدیان محسن، قرهویسی علیاکبر. "مشارکت پاسخ بار در برنامهریزی تولید نیروگاهها". مجله مهندسی برق و الکترونیک ایران. دوره سیزدهم، شماره سوم، پاییز 1395، صفحه 73-82.
[18] آذری نژادیان فاطمه، میرحسینی مقدم سید مازیار، مرزبند موسی، پرهیزی نرگس، "مدیریت بهینه انرژی با استفاده از روش کلونی زنبور مصنوعی چند زمانه برای یک میکروگرید متصل به شبکه با چندین واحد تولید توزیعشده"، هوش محاسباتی در مهندسی برق، سال پنجم، شماره سوم، پاییز 1393.