Investigating the Research Conducted on Improving the Properties of Oxidation Resistance and Erosion of ZrB2/SiC Composites
Subject Areas : Journal of Environmental Friendly MaterialsK Kolahgar Azari 1 , A Alizadeh 2 , A Sayadi Kelemi 3
1 - Composite Engineering Institute, Malek Ashtar University of Technology, Tehran, Iran
2 - Composite Engineering Institute, Malek Ashtar University of Technology, Tehran, Iran
3 - Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
Keywords:
Abstract :
One of the main challenges in advanced industries in the field of future technologies is the existence of materials that can maintain their integrity at temperatures above 2000 degrees Celsius. Ultra-high temperature ceramics (UHTCs) are among the attractive options for meeting this industrial need. Resistance to oxidation and linear and mass erosion is one of the most important and influential properties of these high-temperature ceramics. Hf and Zr diborides are the most important materials among high-temperature ceramics for these components, showing the best resistance to oxidation up to a temperature of 1500 degrees Celsius. Especially ZrB2 has received more attention due to its low density and low cost. However, two important factors hinder its application: firstly, it contains a high amount of boron. Boron oxides quickly vaporize at temperatures above 1200 degrees Celsius, resulting in severe material loss due to hot gases. Secondly, due to its brittleness and low thermal shock resistance, it is prone to sudden fracture. In order to reduce the evaporation of boron oxides and improve the erosion resistance of ZrB2, significant attention has been given to adding silicides (such as SiC, MoSi2, etc.) and carbides (such as ZrC) to ZrB2 to form multiphase ceramics. On the other hand, relatively little attention has been paid to the development of single-phase ceramics with multiple elements. Although ZrC is less prone to evaporation at high temperatures due to the absence of boron, it has lower oxidation resistance compared to diborides (such as ZrB2) and is weaker. This makes it less suitable for anti-erosion applications. The mentioned factors indicate that high-temperature ceramics are limited in their application in environments with very high temperatures, and new single-phase ceramic materials with lower evaporation rates and better oxidation resistance need to be developed. This research focuses on recent studies on increasing the oxidation resistance of ZrB2 composites in detail.
[1] Bellosi A, Monteverde F, Fabbriche DD, Melandri C. Microstructure and properties of ZrB2-based ceramics. Journal of Materials Processing and Manufacturing Science. 2000 Oct;9(2):156-170.
http://dx.doi.org/10.1106/GRKW-RKM4-8CKE-QYET
[2] Hinze JW, Tripp WC, Graham HC. The High Temperature Oxidation Behavior of a HfB2+ 20 v/o SiC Composite. Journal of the Electrochemical Society. 1975 Sep;122(9):1249.
https://dx.doi.org/10.1149/1.2134436
[3] Eakins E, Jayaseelan DD, Lee WE. Toward oxidation-resistant ZrB 2-SiC ultra high temperature ceramics. Metallurgical and Materials Transactions A. 2011 Apr;42:878-887.
https://doi.org/10.1007/s11661-010-0540-8
[4] Gasch M, Ellerby D, Irby E, Beckman S, Gusman M, Johnson S. Processing, properties and arc jet oxidation of hafnium diboride/silicon carbide ultra high temperature ceramics. Journal of materials science. 2004 Oct;39:5925-5937.
https://doi.org/10.1023/B:JMSC.0000041689.90456.af
[5] Khanra AK, Pathak LC, Mishra SK, Godkhindi MM. Self-propagating-high-temperature synthesis (SHS) of ultrafine ZrB 2 powder. Journal of materials science letters. 2003 Sep;22:1189-1191.
https://doi.org/10.1023/A:1025336230885
[6] Chakraborty S, Debnath D, Mallick AR, Das PK. Mechanical and thermal properties of hot-pressed ZrB2-SiC composites. Metallurgical and Materials Transactions A. 2014 Dec;45(13):6277-6284.
https://doi.org/10.1007/s11661-014-2563-z
[7] Eakins E, Jayaseelan DD, Lee WE. Toward oxidation-resistant ZrB 2-SiC ultra high temperature ceramics. Metallurgical and Materials Transactions A. 2011 Apr;42:878-887.
https://doi.org/10.1007/s11661-010-0540-8
[8] Li W, Zhang X, Hong C, Han J, Han W. Hot-pressed ZrB2–SiC–YSZ composites with various yttria content: Microstructure and mechanical properties. Materials Science and Engineering A. 2008 Oct;494(1-2):147-152.
https://doi.org/10.1016/j.msea.2008.04.010
[9] Liu Q, Han W, Zhang X, Wang S, Han J. Microstructure and mechanical properties of ZrB2-SiC composites. Materials Letters. 2009 Jun;63(15):1323-1325.
https://doi.org/10.1016/j.matlet.2009.02.054
[10] Gao R, Min G, Yu H, Zheng SQ, Lu Q, Han J, Wang W. Fabrication and oxidation behavior of LaB6–ZrB2 composites. Ceramics International. 2005 Jan 1;31(1):15-9.
https://doi.org/10.1016/j.ceramint.2004.02.006
[11] Wuchina E, Opila E, Opeka M, Fahrenholtz B, Talmy I. UHTCs: ultra-high temperature ceramic materials for extreme environment applications. The Electrochemical Society Interface. 2007 Dec;16(4):30.
https://doi.org/10.1149/2.f04074if
[12] Opila E, Levine S, Lorincz J. Oxidation of ZrB 2-and HfB 2-based ultra-high temperature ceramics: effect of Ta additions. Journal of Materials Science. 2004 Oct;39:5969-5977.
https://doi.org/10.1023/B:JMSC.0000041693.32531.d1
[13] Sciti D, Silvestroni L, Nygren M. Spark plasma sintering of Zr-and Hf-borides with decreasing amounts of MoSi2 as sintering aid. Journal of the European Ceramic Society.2008 Jan;28(6):1287-1296. https://doi.org/10.1016/j.jeurceramsoc.2007.09.043
[14] Simonenko EP, Simonenko NP, Gordeev AN, Kolesnikov AF, Chaplygin AV, Lysenkov AS, Nagornov IA, Sevastyanov VG, Kuznetsov NT. Oxidation of HfB2-SiC-Ta4HfC5 ceramic material by a supersonic flow of dissociated air. Journal of the European Ceramic Society. 2021 Feb;41(2):1088-1098.
https://doi.org/10.1016/j.jeurceramsoc.2020.10.001
[15] Sonber JK, Murthy TC, Subramanian C, Kumar S, Fotedar RK, Suri AK. Investigations on synthesis of HfB2 and development of a new composite with TiSi2. International Journal of Refractory Metals and Hard Materials. 2010 Mar;28(2):201-210.
https://doi.org/10.1016/j.ijrmhm.2009.09.005
[16] Golla BR, Mukhopadhyay A, Basu B, Thimmappa SK. Review on ultra-high temperature boride ceramics. Progress in Materials Science. 2020 Jun;111:100651.
https://doi.org/10.1016/j.pmatsci.2020.100651
[17] Upadhya K, Yang JM, Hoffman WP. Materials for ultrahigh temperature structural applications. American Ceramic Society Bulletin. 1997;76(12):51-56.
[18] Fahrenholtz, WG, Hilmas GE, Talmy IG, Zaykoski JA. Refractory diborides of zirconium and hafnium. Journal of the American Ceramic Society, 2007:90(5):1347-1364.
https://doi.org/10.1111/j.1551-2916.2007.01583.x
[19] Berkowitz Mattuck JB. High temperature oxidation: III. Zirconium and hafnium diborides. Journal of the Electrochemical Society. 1966 Sep;113(9):908.
http://dx.doi.org/10.1149/1.2424154
[20] Grohsmeyer RJ, Silvestroni L, Hilmas GE, Monteverde F, Fahrenholtz WG, D’Angió A, Sciti D. ZrB2-MoSi2 ceramics: a comprehensive overview of microstructure and properties relationships. Part I: processing and microstructure. Journal of the European Ceramic Society. 2019 Jun;39(6):1939-1947.
https://doi.org/10.1016/j.jeurceramsoc.2019.01.022
[21] Hwang SS, Vasiliev AL, Padture NP. Improved processing and oxidation-resistance of ZrB2 ultra-high temperature ceramics containing SiC nanodispersoids. Materials Science and Engineering A. 2007 Aug;464(1-2):216-224.
https://doi.org/10.1016/j.msea.2007.03.002
[22] Karlsdottir SN, Halloran JW. Formation of oxide scales on zirconium diboride–silicon carbide composites during oxidation: relation of subscale recession to liquid oxide flow. Journal of the American Ceramic Society. 2008 Nov;91(11):3652-3658.
https://doi.org/10.1111/j.1551-2916.2008.02639.x
[23] Li J, Lenosky TJ, Först CJ, Yip S. Thermochemical and mechanical stabilities of the oxide scale of ZrB2+ SiC and oxygen transport mechanisms. Journal of the American Ceramic Society. 2008 May;91(5):1475-1480.
https://doi.org/10.1111/j.1551-2916.2008.02319.x
[24] Medri V, Monteverde F, Balbo A, Bellosi A. Comparison of ZrB2-ZrC-SiC composites fabricated by spark plasma sintering and hot-pressing. Advanced Engineering Materials. 2005 Mar;7(3):159-163.
https://doi.org/10.1002/adem.200400184
[25] Monteverde F. The addition of SiC particles into a MoSi2-doped ZrB2 matrix: effects on densification, microstructure and thermo-physical properties. Materials Chemistry and Physics. 2009 Feb;113(2-3):626-633.
https://doi.org/10.1016/j.matchemphys.2008.07.091
[26] Monteverde F, Bellosi A. Oxidation of ZrB2-based ceramics in dry air. Journal of the Electrochemical Society. 2003 Oct;150(11):B552.
http://dx.doi.org/10.1149/1.1618226
[27] Monteverde F, Bellosi A. Beneficial effects of AlN as sintering aid on microstructure and mechanical properties of hot-pressed ZrB2. Advanced Engineering Materials. 2003 Jul;5(7):508-512.
https://doi.org/10.1002/adem.200300349
[28] Monteverde F, Saraga F, Reimer T, Sciti D. Thermally stimulated self-healing capabilities of ZrB2-SiC ceramics. Journal of the European Ceramic Society. 2021 Dec;41(15):7423-7433.
https://doi.org/10.1016/j.jeurceramsoc.2021.08.012
[29] Nayebi B, Parvin N, Mohandesi JA, Asl MS. Densification and toughening mechanisms in spark plasma sintered ZrB2-based composites with zirconium and graphite additives. Ceramics International. 2020 Jun;46(9):13685-13694.
https://doi.org/10.1016/j.ceramint.2020.02.156
[30] Nisar A, Bajpai S, Khan MM, Balani K. Wear damage tolerance and high temperature oxidation behavior of HfB2: ZrB2–SiC composites. Ceramics International. 2020 Sep;46(13):21689-21698.
https://doi.org/10.1016/j.ceramint.2020.05.276
[31] Peng F, Speyer RF. Oxidation resistance of fully dense ZrB2 with SiC, TaB2, and TaSi2 additives. Journal of the American Ceramic Society. 2008 May;91(5):1489-1494.
https://doi.org/10.1111/j.1551-2916.2008.02368.x
[32] Qiang Q, Xinghong Z, Songhe M, Wenbo H, Changqing H, Jiecai H. Reactive hot pressing and sintering characterization of ZrB2–SiC–ZrC composites. Materials Science and Engineering A. 2008 Sep;491(1-2):117-123.
https://doi.org/10.1016/j.msea.2008.01.053
[33] Rangaraj L, Divakar C, Jayaram V. Fabrication and mechanisms of densification of ZrB2-based ultra high temperature ceramics by reactive hot pressing. Journal of the European Ceramic Society. 2010 Jan;30(1):129-138.
https://doi.org/10.1016/j.jeurceramsoc.2009.08.003
[34] Sciti D, Brach M, Bellosi A. Oxidation behavior of a pressureless sintered ZrB2–MoSi2 ceramic composite. Journal of Materials Research. 2005 Apr;20(4):922-930.
https://doi.org/10.1557/JMR.2005.0111
[35] Sciti D, Monteverde F, Guicciardi S, Pezzotti G, Bellosi A. Microstructure and mechanical properties of ZrB2–MoSi2 ceramic composites produced by different sintering techniques. Materials Science and Engineering A. 2006 Oct;434(1-2):303-309.
https://doi.org/10.1016/j.msea.2006.06.112
[36] Silvestroni L, Melandri C, Venkatachalam V, Binner J, Sciti D. Merging toughness and oxidation resistance in a light ZrB2 composite. Materials & Design. 2019 Dec;183:108078.
https://doi.org/10.1016/j.matdes.2019.108078
[37] Wu WW, Zhang GJ, Kan YM, Wang PL. Reactive hot pressing of ZrB2–SiC–ZrC composites at 1600°C. Journal of the American Ceramic Society. 2008 Aug;91(8):2501-2508.
https://doi.org/10.1111/j.1551-2916.2008.02507.x
[38] Zhang X, Hu P, Han J, Meng S. Ablation behavior of ZrB2–SiC ultra high temperature ceramics under simulated atmospheric re-entry conditions. Composites Science and Technology. 2008 Jun;68(7-8):1718-1726.
https://doi.org/10.1016/j.compscitech.2008.02.009
[39] Zhang X, Li X, Han J, Han W, Hong C. Effects of Y2O3 on microstructure and mechanical properties of ZrB2–SiC ceramics. Journal of alloys and compounds. 2008 Oct;465(1-2):506-511.
https://doi.org/10.1016/j.jallcom.2007.10.137
[40] Zhang X, Qu Q, Han J, Han W, Hong C. Microstructural features and mechanical properties of ZrB2–SiC–ZrC composites fabricated by hot pressing and reactive hot pressing. Scripta Materialia. 2008 Oct;59(7):753-756.
https://doi.org/10.1016/j.scriptamat.2008.06.004
[41] Zhang X, Wang Z, Sun X, Han W, Hong C. Effect of graphite flake on the mechanical properties of hot pressed ZrB2–SiC ceramics. Materials Letters. 2008 Nov;62(28):4360-4362.
https://doi.org/10.1016/j.matlet.2008.07.027
[42] Zimmermann JW, Hilmas GE, Fahrenholtz WG. Thermal shock resistance of ZrB2 and ZrB2–30% SiC. Materials Chemistry and Physics. 2008 Nov;112(1):140-145.
https://doi.org/10.1016/j.matchemphys.2008.05.048
[43] Zimmermann JW, Hilmas GE, Fahrenholtz WG, Dinwiddie RB, Porter WD, Wang H. Thermophysical properties of ZrB2 and ZrB2–SiC ceramics. Journal of the American Ceramic Society. 2008 May;91(5):1405-1411.
https://doi.org/10.1111/j.1551-2916.2008.02268.x
[44] Kim S, Chae JM, Lee SM, Oh YS, Kim HT. Thermal and mechanical properties of ZrB 2-SiC ceramics fabricated by hot pressing with change in ratio of submicron to nano size of SiC. Journal of the Korean Ceramic Society. 2013;50(6):410-415.
http://dx.doi.org/10.4191/kcers.2013.50.6.410
[45] Rezaie A, Fahrenholtz WG, Hilmas GE. Evolution of structure during the oxidation of zirconium diboride–silicon carbide in air up to 1500°C. Journal of the European Ceramic Society. 2007 Jan;27(6):2495-2501.
https://doi.org/10.1016/j.jeurceramsoc.2006.10.012
[46] Peng F, Berta Y, Speyer RF. Effect of SiC, TaB2 and TaSi2 additives on the isothermal oxidation resistance of fully dense zirconium diboride. Journal of Materials Research. 2009 May;24(5):1855-1867.
https://doi.org/10.1557/jmr.2009.0216
[47] Monteverde F. Progress in the fabrication of ultra-high-temperature ceramics:“in situ” synthesis, microstructure and properties of a reactive hot-pressed HfB2–SiC composite. Composites Science and Technology. 2005 Sep;65(11-12):1869-1879.
https://doi.org/10.1016/j.compscitech.2005.04.003
[48] Uhlmann DR, Kreidl NJ. Glass-science and technology. Glass-science and technology. 1980;5:1-282.
[49] Wang J, Zhang L, Zeng Q, Vignoles GL, Guette A. Theoretical investigation for the active to passive transition in the oxidation of silicon carbide. Journal of the American Ceramic Society. 2008 May;91(5):1665-1673.
https://doi.org/10.1111/j.1551-2916.2008.02353.x
[50] Balat MJ. Determination of the active-to-passive transition in the oxidation of silicon carbide in standard and microwave-excited air. Journal of the European Ceramic Society. 1996 Jan;16(1):55-62.
https://doi.org/10.1016/0955-2219(95)00104-2
[51] Opeka MM, Talmy IG, Zaykoski JA. Oxidation-based materials selection for 2000 C+ hypersonic aerosurfaces: Theoretical considerations and historical experience. Journal of materials science. 2004 Oct;39:5887-5904.
https://doi.org/10.1023/B:JMSC.0000041686.21788.77
[52] Mcclaine L. Technical Report ASD-TDR-62-204. Part II, AFML, WPAFB, OH, 1963.
[53] Monteverde F, Bellosi A. The resistance to oxidation of an HfB2–SiC composite. Journal of the European Ceramic Society, 2005;25(7):1025-1031. https://doi.org/10.1016/j.jeurceramsoc.2004.05.009
[54] Groza J, Garcia M and Schneider J, Surface effects in field-assisted sintering. Journal of Materials Research, 2001;16(1):286-292.
http://dx.doi.org/10.1557/JMR.2001.0043
[55] Zhang XH, Hu P, Han JC, Xu L, Meng SH. The addition of lanthanum hexaboride to zirconium diboride for improved oxidation resistance. Scripta Materialia, 2007;57(11):1036-1039.
http://dx.doi.org/10.1016/j.scriptamat.2007.07.036
[56] Tokita M. Progress of Spark Plasma Sintering (SPS) Method, Systems, Ceramics Applications and Industrialization. Ceramics, 2021;4(2):160-198.
http://dx.doi.org/10.3390/ceramics4020014
[57] Yadhukulakrishnan GB, Karumuri S. Spark plasma sintering of graphene reinforced zirconium diboride ultra-high temperature ceramic composites. Ceramics International, 2013;39(6):6637-6646.
http://dx.doi.org/10.1016/j.ceramint.2013.01.101
[58] Sciti D, Silvestroni L, Bellosi A. Fabrication and properties of HfB2–MoSi2 composites produced by hot pressing and spark plasma sintering. Journal of Materials Research, 2006;21(6):1460-1466.
http://dx.doi.org/10.1557/jmr.2006.0180
[59] Baihe D, Cheng Y, Xun L. Using PyC modified 3D carbon fiber to reinforce UHTC under low temperature sintering without pressure. Journal of Advanced Ceramics. 2021;10(4).
http://dx.doi.org/10.1007/s40145-021-0495-9
[60] Bronson A, Chessa J. An evaluation of vaporizing rates of SiO2 and TiO2 as protective coatings for ultrahigh temperature ceramic composites. Journal of the American Ceramic Society, 2008;91(5):1448-1452.
http://dx.doi.org/10.1111/j.1551-2916.2008.02286.x
[61] Chamberlain AL, Fahrenholtz WG, Hilmas GE. Pressureless sintering of zirconium diboride. Journal of the American Ceramic Society, 2006;89(2):450-456.
https://doi.org/10.1111/j.1551-2916.2005.00739.x
[62] Fahrenholtz WG, E. Hilmas G, Zhang S, Zhu S. Pressureless sintering of zirconium diboride: particle size and additive effects. Journal of the American Ceramic Society, 2008;91(5):1398-1404.
http://dx.doi.org/10.1111/j.1551-2916.2007.02169.x
[63] Monteverde F, Ultra-high temperature HfB2–SiC ceramics consolidated by hot-pressing and spark plasma sintering. Journal of alloys and compounds, 2007;428(1-2):197-205.
http://dx.doi.org/10.1016/j.jallcom.2006.01.107
[64] Sonber J, Suri A. Synthesis and consolidation of zirconium diboride. Advances in Applied Ceramics. 2011;110(6):321-334.
http://dx.doi.org/10.1179/1743676111Y.0000000008
[65] Khanra A, Godkhindi M. Effect of Ni additives on pressureless sintering of SHS ZrB2. Advances in applied ceramics, 2005;104(6):273-276. http://dx.doi.org/10.1179/174367606X69898
[66] Monteverde F, Bellosi A, Guicciardi S. Processing and properties of zirconium diboride-based composites. Journal of the European Ceramic Society, 2002;22(3):279-288.
http://dx.doi.org/10.1016/S0955-2219(01)00284-9
[67] Monteverde F, Guicciardi S, Bellosi A. Advances in microstructure and mechanical properties of zirconium diboride based ceramics. Materials Science and Engineering A, 2003;346(1-2):310-319.
http://dx.doi.org/10.1016/S0921-5093(02)00520-8
[68] Eatemadi R, Balak Z. Investigating the effect of SPS parameters on densification and fracture toughness of ZrB2-SiC nanocomposite. Ceramics International, 2019;45(4):4763-4770.
https://doi.org/10.1016/j.ceramint.2018.11.169
[69] Mohammadpour B, Ahmadi Z, Shokouhimehr M, Shahedi Asl M. Spark plasma sintering of Al-doped ZrB2–SiC composite. Ceramics International, 2019;45(4):4262-4267.
http://dx.doi.org/10.1016/j.ceramint.2018.11.098
[70] Balak Z, Shahedi Asl M, Azizieh M, Kafashan H, Hayati R. Effect of different additives and open porosity on fracture toughness of ZrB2–SiC-based composites prepared by SPS. Ceramics International, 2017;43(2):2209-2220.
https://doi.org/10.1016/j.ceramint.2016.11.005
[71] Zhao Y, Wang LJ, Zhang P, Jiang W, Chen LD. Preparation and microstructure of a ZrB2–SiC composite fabricated by the spark plasma sintering–reactive synthesis (SPS–RS) method. Journal of the American Ceramic Society, 2007;90(12):4040-4042.
http://dx.doi.org/10.1111/j.1551-2916.2007.02050.x
[72] Silvestroni L, Sciti D, Kling J, Lauterbach S, Kleebe HJ. Sintering mechanisms of zirconium and hafnium carbides doped with MoSi2. Journal of the American Ceramic Society, 2009;92(7):1574-1579.
http://dx.doi.org/10.1111/j.1551-2916.2009.03049.x