Two Step Functionalizing of Mesoporous Silica with L- Cysteine for Heavy Metals Removal
Subject Areas : Journal of Environmental Friendly Materials
1 - Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
2 - Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
Keywords:
Abstract :
Mesoporous silica SBA-15 was synthesized by liquid crystal method and then was functionalized by amino acid L-Cysteine in presence of N,N'-Dicyclohexylcarbodiimide (DCC) as coupling agent. The functionalized nanoporous material has been utilized for adsorptive removal of heavy metals such as Copper, Cadmium, Silver, Cobalt, Nickel, and Lead cations from aqueous solution. The synthesized adsorbent has been also characterized by means of BET/BJH surface area, TEM and FT-IR methods. Moreover, adsorption capacities of the functionalized material were calculated by heavy metal ions analysis with atomic absorption spectroscopy (AA). The pH of the solution has been optimized for each element. The results explored the L-Cysteine functionalized mesoporous silica (SBA-15) is a suitable adsorbent for almost completely removal of Cu and Ag. It is also an efficient adsorbent for some other heavy metals. According to this study, adsorption capacity of the nanostructured material for heavy metals removal is (Cu+2, 99.6%; Ag+, 99.4%; Cd+2, 84.4%; Pb+2, 89.2%; Ni+2, 60.1%; Co+2, 86.9%).
[1] S. Chowdhury, M. A. Jafar Mazumder, O. Al-Attas and T. Husain, Sci. Total Environ., 569, (1), (2016), 476.
[2] S. A. Cavaco, M. M. Fernandes, M. M. Quina, L. M. Ferreira and J. Hazard, Mater., 144, (2016), 634.
[3] E. S., Behbahani, K. Dashtian, M. Ghaedi and J. Hazard, Mater., (2020), 124560.
[4] N. A. A., Qasem, R. H. Mohammed and D. U. Lawal, npj Clean Water, 4, (2021), 36.
[5] I. Georgescu, M. Mureşeanu, G. Cârjă and V. Hulea, J. Environ. Eng., 10, (2013), 1061.
[6] S. Abdulrazak, K. Hussaini and H. M. Sani, Appl. Water Sci., 7, (2017), 3151.
[7] P. A. Kobielska, A. J. Howarth, O. K. Farha and S. Nayak, Coord. Chem. Rev. 358, (2018), 92.
[8] G. Xu, Zi-Han An, Ke Xu, Q. Liu, R. Das and He-Li Zhao, Coord. Chem. Rev., 427, (2021), 213554.
[9] Y. Zhang, X. Cao and J. Sun, J. Sol-Gel Sci. Technol. 94, (2020), 658.
[10] Q. Li, Z. Wang, D. Fang, H. Qu, Y. Zhu, H. Zou, Y. Chen, Y. Du and H. Hu, New J. Chem., 38, (2014), 248.
[11] F. Rechotnek, H. D.M. Follmann and R. Silva, J. Env. Chem. Eng., (2021), 106492.
[12] D. F. Enache, E. Vassile, C. M. Simonescu, A. Răzvan, R. A. Nicolescu, A. C. Nechifora, O. Opera, R. E. Pătescu, C. Onose and F. Dumitru, J. Solid-State Chem., 253, (2017), 318.
[13] Z. Gao, L. Wang, T. Qi, J. Chu and Y. Zhang, Colloids Surf. A: Physicochem. Eng. Asp., 304, (2007), 77.
[14 D. Quang, J. Kim, P. Sarawade, D. Tuan and H. Kim, J. Ind. Eng. Chem., 18, (2012), 83.
[15] S. Saeung1 and V. Boonamnuayvitaya, J. Environ. Sci., 20, (2008), 379.
[16] M. Mureseanu, A. Reiss, I. Stefanescu, E. David, V. Parvulescu, G. Renard and V. Hulea, Chemosphere, 73, (2008) 1499.
[17] R. Zhang, J.J. Richardson, A.F. Masters, G.Yun, K. Liang, T. Maschmeyer, Water Air Soil Pollut., 229:136, (2018), 1.