Functionally Graded Thermal Spray Coatings: Methods, Parameters, and Post-Spray Treatments
Subject Areas : Journal of Environmental Friendly MaterialsA Rabieifar 1 , M, R Tavighi 2
1 - Advanced Materials Engineering Research Center, Karaj Branch, Islamic Azad University, Karaj, Iran
2 - Advanced Materials Engineering Research Center, Karaj Branch, Islamic Azad University, Karaj, Iran
Keywords:
Abstract :
Surface coating on metal substrates has remained a difficult challenge for researchers due to the conflicting requirements for different properties. In recent years, due to their mechanical, thermal, electrical, and tribological properties in many advanced engineering applications, functionally graded coatings (FGCs) have become fascinating materials for researchers worldwide to obtain coatings with specific requirements. FGCs are a novel type of traditional composites in which phases are not equally distributed to form a smooth gradient structure; thus, gradient coatings have shown a new research path.The present paper tries to describe briefly major thermal spray techniques used to spray functionally graded coatings such as atmospheric plasma spraying, high velocity oxy-fuel spraying, suspension and solution precursor plasma spraying, and finally low and high-pressure cold gas spray methods. The examples of combined spray processes as well as some examples of post-spray treatment including laser and high temperature treatments or mechanical ones, are described.
[1] Saleh B., Jiang J, Fathi R, Al-Hababi T, Xu Qiong, Wang L, Song D and Ma A. 30 Years of functionally graded materials: An overview of manufacturing methods, Applications and Future Challenges, Compos. B Eng. (2020);201(1):108376.
[2] Saleh B., Jiang J, Fathi R, Xu Qiong, Li Yuhua and Ma A. Influence of gradient structure on wear characteristics of centrifugally cast functionally graded magnesium matrix composites for automotive applications, Arch. Civ. Mech. Eng. 2021;21:1-23.
https://doi.org/10.1007/s43452-020-00168-1
[3] Fathi R, Ma A, Saleh B, Xu Qiong, Jiang J. Investigation on mechanical properties and wear performance of functionally graded AZ91-SiCp composites via centrifugal casting, Mater. Today Commun. 2020;24(13):101169.
https://doi.org/10.1016/j.mtcomm.2020.101169
[4] Lin D, Li Q, Li W, Zhou S, Swain MV. Design optimization of functionally graded dental implant for bone remodeling. Compos B Eng. 2009;40(7):668–675.
http://dx.doi.org/10.1016/j.compositesb.2009.04.015
[5] El-Galy IM, Bassiouny BI, Ahmed MH. Empirical model for dry sliding wear behaviour of centrifugally cast functionally graded Al/SiCp composite. Key Eng Mater. 2018;786(4):276–85.
http://dx.doi.org/10.4028/www.scientific.net/kem.786.276
[6] Saleh B, Jiang J, Ma A, Song D, Yang D, Xu Q. Review on the influence of different reinforcements on the microstructure and wear behavior of functionally graded aluminum matrix composites by centrifugal casting. Met Mater Int. 2020;26(7):933–960.
http://dx.doi.org/10.1007/s12540-019-00491-0
[7] Saleh B, Jiang J, Ma A, Song D, Yang D. Effect of main parameters on the mechanical and wear behaviour of functionally graded materials by centrifugal casting: A review. Met Mater Int. 2019; 25(6):1395–1409. http://dx.doi.org/10.1007/s12540-019-00273-8
[8] El-Galy IM, Ahmed MH, Bassiouny BI. Characterization of functionally graded Al-SiC p metal matrix composites manufactured by centrifugal casting. Alex Eng J. 2017;56(4):371–81.
http://dx.doi.org/10.1016/j.aej.2017.03.009
[9] Radhika N, Raghu R. Influence of parameters on sliding wear of titanium nitride coated 6061 aluminium alloy. Tribol Ind. 2018;40(2):203–212. http://dx.doi.org/10.24874/ti.2018.40.02.04
[10] Mohandas A, Radhika N. Studies on mechanical behaviour of aluminium/nickel coated silicon carbide reinforced functionally graded composite. Tribol Ind. 2017;39(2):145–151. http://dx.doi.org/10.24874/ti.2017.39.02.01
[11] Radhika N, Thirumalini S, Shivashankar A. Investigation on mechanical and adhesive wear behavior of centrifugally cast functionally graded copper/SiC metal matrix composite. Trans Indian Inst Met. 2018;71(6):1311–1322.
http://dx.doi.org/10.1007/s12666-017-1246-z
[12] Saleh BI, Ahmed MH. Development of functionally graded tubes based on pure Al/Al2O3 metal matrix composites manufactured by centrifugal casting for automotive applications. Met Mater Int. 2020;26(9):1430–1440. http://dx.doi.org/10.1007/s12540-019-00391-3
[13] Fotovvati B, Namdari N, Dehghanghadikolaei A. On coating techniques for surface protection: A review. J Manuf Mater Process. 2019;3(1):28. http://dx.doi.org/10.3390/jmmp3010028
[14] Karmakar R, Maji P, Ghosh SK. A review on the nickel based metal matrix composite coating. Met Mater Int. 2021;27(7):2134–2145.
http://dx.doi.org/10.1007/s12540-020-00872-w
[15] Agarwala RC, Agarwala V. Electroless alloy/composite coatings: A review. Sadhana. 2003;28(3–4):475–493.
http://dx.doi.org/10.1007/bf02706445
[16] Bao W, Deng Z, Zhang S, Ji Z, Zhang H. Next-generation composite coating system: Nanocoating. Front Mater. 2019;6:1-6.
http://dx.doi.org/10.3389/fmats.2019.00072
[17] Łatka L, Pawłowski L, Winnicki M, Sokołowski P, Małachowska A, Kozerski S. Review of functionally graded thermal sprayed coatings. Appl Sci. 2020;10(15):5153.
http://dx.doi.org/10.3390/app10155153
[18] Roy S. Functionally graded coatings on biomaterials: a critical review. Mater Today Chem. 2020;18(100375):100375. http://dx.doi.org/10.1016/j.mtchem.2020.100375
[19] Erdogan F, Ozturk M. Periodic cracking of functionally graded coatings. Int J Eng Sci. 1995;33(15):2179–2195. http://dx.doi.org/10.1016/0020-7225(95)00065-6
[20] Li Y, Feng Z, Hao L, Huang L, Xin C, Wang Y. A review on functionally graded materials and structures via additive manufacturing: From multiscale design to versatile functional properties. Adv Mater Technol. 2020;5(6):1-8
http://dx.doi.org/10.1002/admt.201900981
[21] Pawłowski L, The Science and Engineering of Thermal Spray Coatings, Wiley, Chichester, (2008), 194.
[22] Leivo E, Wilenius T, Kinos T, Vuoristo P, Mäntylä T. Properties of thermally sprayed fluoropolymer PVDF, ECTFE, PFA and FEP coatings. Progress in Organic Coatings. 2004 Jan 1;49(1):69-73. http://dx.doi.org/10.1016/j.porgcoat.2003.08.011
[23] Pawlowski L. Finely grained nanometric and submicrometric coatings by thermal spraying: A review. Surf Coat Technol. 2008;202(18):4318–4328. http://dx.doi.org/10.1016/j.surfcoat.2008.04.004
[24] Heimann RB. Plasma Spray Coatings, Principles and Applications, Wiley, Oxford, (2008), 245.
[25] Pateyron B, Elchinger MF, Delluc G, Fauchais P. Thermodynamic and transport properties of Ar-H2 and Ar-He plasma gases used for spraying at atmospheric pressure. I: Properties of the mixtures. Plasma Chem Plasma Process. 1992;12(4):421–448. http://dx.doi.org/10.1007/bf01447253
[26] Fauchais PL, Heberlein JVR, Boulos MI. Thermal spray fundamentals: From powder to part. Boston, MA: Springer US; 2014.
[27] Rico A, Salazar A, Escobar ME, Rodriguez J, Poza P. Optimization of atmospheric low-power plasma spraying process parameters of Al2O3-50wt%Cr2O3 coatings. Surf Coat Technol. 2018;354:281–296.
http://dx.doi.org/10.1016/j.surfcoat.2018.09.032
[28] Łatka L, Michalak M, Jonda E. Atmospheric plasma spraying of Al2O3 + 13% TiO2 coatings using external and internal injection system. Adv Mater Sci. 2019;19(4):5–17.
http://dx.doi.org/10.2478/adms-2019-0018
[29] Toma FL, Scheitz S, Berger LM, Sauchuk V, Kusnezoff M, Thiele S. Comparative study of the electrical properties and characteristics of thermally sprayed alumina and spinel coatings. J Therm Spray Technol. 2011;20(1–2):195–204.
http://dx.doi.org/10.1007/s11666-010-9580-2
[30] Łatka L, Szala M, Michalak M, Pałka T. Impact of atmospheric plasma spray parameters on cavitation erosion resistance of Al2O3-13% TiO2 coatings. Acta Phys Pol A. 2019;136(2):342–347.
http://dx.doi.org/10.12693/aphyspola.136.342
[31] Wu H, Li HJ, Fu QG, Yao DJ, Wang YJ, Ma C. Microstructures and ablation resistance of ZrC coating for SiC-coated carbon/carbon composites prepared by supersonic plasma spraying. J Therm Spray Technol. 2011;20(6):1286–1291.
http://dx.doi.org/10.1007/s11666-011-9676-3
[32] Basak AK, Achanta S, Celis JP, Vardavoulias M, Matteazzi P. Structure and mechanical properties of plasma sprayed nanostructured alumina and FeCuAl–alumina cermet coatings. Surf Coat Technol. 2008;202(11):2368–2373.
http://dx.doi.org/10.1016/j.surfcoat.2007.08.053
[33] Hashemi SM, Enayati MH, Fathi MH. Plasma spray coatings of Ni-Al-SiC composite. J Therm Spray Technol. 2009;18(2):284–291.
http://dx.doi.org/10.1007/s11666-009-9296-3
[34] Fauchais P, Montavon G, Bertrand G. From powders to thermally sprayed coatings. Journal of thermal spray technology. 2010 Jan;19:56-80.
https://doi.org/10.1007/s11666-009-9435-x
[35] Gitzhofer F, Bouyer E, Boulos MI, inventors; Universite de Sherbrooke, assignee. Suspension plasma spray. United States patent US 5,609,921. 1997 Mar 11.
[36] Ganvir A, Curry N, Markocsan N, Nylén P, Toma FL. Comparative study of suspension plasma sprayed and suspension high velocity oxy-fuel sprayed YSZ thermal barrier coatings. Surface and Coatings Technology. 2015 Apr 25;268:70-76.
https://doi.org/10.1016/j.surfcoat.2014.11.054
[37] Sokołowski P, Nylen P, Musalek R, Łatka L, Kozerski S, Dietrich D, Lampke T, Pawłowski L. The microstructural studies of suspension plasma sprayed zirconia coatings with the use of high-energy plasma torches. Surface and Coatings Technology. 2017 May 25;318:250-261.
https://doi.org/10.1016/j.surfcoat.2017.03.025
[38] Kozerski S, Pawlowski L, Jaworski R, Roudet F, Petit F. Two zones microstructure of suspension plasma sprayed hydroxyapatite coatings. Surface and Coatings Technology. 2010 Jan 25;204(9-10):1380-1387.
http://dx.doi.org/10.1016/j.surfcoat.2009.09.020
[39] Sokolowski P. Properties of suspension plasma sprayed zirconia coatings using different plasma torches (Ph.D. Doctoral dissertation, Université de Limoges; Uniwersytet Wrocławski) Limoges, France, 2016.
https://theses.hal.science/tel-01953309/document
[40] Shahien M, Suzuki M, Tsutai Y. Controlling the coating microstructure on axial suspension plasma spray process. Surface and Coatings Technology. 2018 Dec 25;356:96-107.
https://doi.org/10.1016/j.surfcoat.2018.09.055
[41] Watanabe Y, Sato H, Fujiwara E. Functionally graded metallic biomaterials. Advances in Metallic Biomaterials: Processing and Applications. 2015:181-209.
https://doi.org/10.1007/978-3-662-46842-5_9
[42] Cattini A, Bellucci D, Sola A, Pawłowski L, Cannillo V. Microstructural design of functionally graded coatings composed of suspension plasma sprayed hydroxyapatite and bioactive glass. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2014 Apr;102(3):551-560.
https://doi.org/10.1002/jbm.b.33034
[43] Tomaszek R, Pawlowski L, Gengembre L, Laureyns J, Le Maguer A. Microstructure of suspension plasma sprayed multilayer coatings of hydroxyapatite and titanium oxide. Surface and Coatings Technology. 2007 May 21;201(16-17):7432-7440.
https://doi.org/10.1016/j.surfcoat.2007.02.013
[44] Björklund S, Goel S, Joshi S. Function-dependent coating architectures by hybrid powder-suspension plasma spraying: Injector design, processing and concept validation. Materials & Design. 2018 Mar 15;142:56-65.
https://doi.org/10.1016/j.matdes.2018.01.002
[45] Wang C, Wang Y, Fan S, You Y, Wang L, Yang C, Sun X, Li X. Optimized functionally graded La2Zr2O7/8YSZ thermal barrier coatings fabricated by suspension plasma spraying. Journal of Alloys and Compounds. 2015 Nov 15;649:1182-1190.https://doi.org/10.1016/j.jallcom.2015.05.290
[46] Sokołowski P, Pawlowski L. Review of recent studies on suspension plasma sprayed ZrO2 coatings. Advances in Materials Science Research. 2016;26:137-180.
[47] Pawłowski, L. Thermal spray coatings. In Encyclopedia of Composites; Nicolais, L., Borzacchiello, A., Eds.; Wiley and Sons: Chichester, UK, 2012; pp. 3014–3034.
[48] Yang T, Ma W, Meng X, Huang W, Bai Y, Dong H. Deposition characteristics of CeO2-Gd2O3 co-stabilized zirconia (CGZ) coating prepared by solution precursor plasma spray. Surface and Coatings Technology. 2020 Jan 15;381:125114.
https://doi.org/10.1016/j.surfcoat.2019.125114
[49] Prakash BS, Kumar SS, Aruna ST. Microstructure and performance of LSM/YSZ based solid oxide fuel cell cathodes fabricated from solution combustion co-synthesized powders and by solution precursor plasma spraying. Surface and Coatings Technology. 2017 Jan 25;310:25-32.
https://doi.org/10.1016/j.surfcoat.2016.12.004
[50] Cañas E, Orts MJ, Boccaccini AR, Sánchez E. Microstructural and in vitro characterization of 45S5 bioactive glass coatings deposited by solution precursor plasma spraying (SPPS). Surface and Coatings Technology. 2019 Aug 15;371:151-160.
https://doi.org/10.1016/j.surfcoat.2018.12.057
[51] Yu Z, Moussa H, Liu M, Schneider R, Wang W, Moliere M, Liao H. Development of photocatalytically active heterostructured MnO/ZnO and CuO/ZnO films via solution precursor plasma spray process. Surf. Coat. Technol. 2019 Aug15;371:107-116.
https://doi.org/10.1016/j.surfcoat.2019.02.053
[52] Yu ZX, Ma YZ, Zhao YL, Huang JB, Wang WZ, Moliere M, Liao HL. Effect of precursor solutions on ZnO film via solution precursor plasma spray and corresponding gas sensing performances. Applied Surface Science. 2017 Aug 1;412:683-689.
https://doi.org/10.1016/j.apsusc.2017.03.217
[53] Darthout É, Laduye G, Gitzhofer F. Processing parameter effects and thermal properties of Y2Si2O7 nanostructured environmental barrier coatings synthesized by solution precursor induction plasma spraying. Journal of Thermal Spray Technology. 2016 Oct;25:1264-1279.
https://doi.org/10.1007/s11666-016-0450-4
[54] Mavier F, Zoubian F, Bienia M, Coudert JF, Lejeune M, Rat V, André P. Plasma spraying of solution precursor in pulsed mode: In-flight phenomena and coating deposition. Plasma Chemistry and Plasma Processing. 2018 Jul;38:657-82. https://doi.org/10.1007/s11090-018-9883-5
[55] Cañas E, Orts MJ, Boccaccini AR, Sánchez E. Solution Precursor Plasma Spraying (SPPS): A novel and simple process to obtain bioactive glass coatings. Materials Letters. 2018 Jul 15;223:198-202. https://doi.org/10.1016/j.matlet.2018.04.031
[56] Basu S, Jordan EH, Cetegen BM. Fluid mechanics and heat transfer of liquid precursor droplets injected into high-temperature plasmas. Journal of Thermal Spray Technology. 2008 Mar;17:60-72.
https://doi.org/10.1007/s11666-007-9140-6
[57] Golozar M, Chien K, Lian K, Coyle TW. Pseudo-capacitors: SPPS deposition and electrochemical analysis of α-MoO3 and Mo2N coatings. Journal of thermal spray technology. 2013 Jun;22:710-722.
https://doi.org/10.1007/s11666-013-9925-8
[58] Jordan EH, Jiang C, Gell M. The solution precursor plasma spray (SPPS) process: a review with energy considerations. Journal of Thermal Spray Technology. 2015 Oct;24:1153-1165.
https://doi.org/10.1007/s11666-015-0272-9
[59] Fauchais P, Rat V, Coudert JF, Etchart-Salas R, Montavon G. Operating parameters for suspension and solution plasma-spray coatings. Surface and Coatings Technology. 2008 Jun 15;202(18):4309-4317. https://doi.org/10.1016/j.surfcoat.2008.04.003
[60] Joshi SV, Sivakumar G. Hybrid processing with powders and solutions: A novel approach to deposit composite coatings. Journal of Thermal Spray Technology. 2015 Oct;24:1166-1186.
https://doi.org/10.1007/s11666-015-0262-y
[61] Hou H, Veilleux J, Gitzhofer F, Wang Q, Liu Y. Hybrid suspension/solution precursor plasma spraying of a complex Ba (Mg 1/3 Ta 2/3)O3 perovskite: Effects of processing parameters and precursor chemistry on phase formation and decomposition. Journal of Thermal Spray Technology. 2019 Jan 15;28:12-26.
https://doi.org/10.1007/s11666-018-0797-9
[62] Pawlowski L. Suspension and solution thermal spray coatings. Surf Coat Technol 2009;203(19):2807–2829. http://dx.doi.org/10.1016/j.surfcoat.2009.03.005
[63] Planche MP, Liao H, Normand B, Coddet C. Relationships between NiCrBSi particle characteristics and corresponding coating properties using different thermal spraying processes. Surface and coatings technology. 2005 Dec 21;200(7):2465-2473. https://doi.org/10.1016/j.surfcoat.2004.08.224
[64] Hasan M, Stokes J, Looney L, Hashmi MS. Effect of spray parameters on residual stress build-up of HVOF sprayed aluminium/tool-steel functionally graded coatings. Surface and Coatings technology. 2008 May 15;202(16):4006-4010.
https://doi.org/10.1016/j.surfcoat.2008.02.016
[65] Kamara AM, Davey K. Simplified models for residual stress prediction in thermally sprayed coatings. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2008 Nov 1;222(11):2053-2068.
https://doi.org/10.1243/09544062JMES979
[66] Mamun KA, Stokes J. Development of a semi automated dual feed unit to produce FGM coatings using the HVOF thermal spray process. The South Pacific Journal of Natural and Applied Sciences. 2014;32(1):18-26.
https://doi.org/10.1071/SP14003
[67] Ivosevic M, Knight R, Kalidindi SR, Palmese GR, Sutter JK. Adhesive/cohesive properties of thermally sprayed functionally graded coatings for polymer matrix composites. Journal of Thermal Spray Technology. 2005 Mar;14:45-51.
https://doi.org/10.1361/10599630522765
[68] Saaedi J, Coyle TW, Arabi H, Mirdamadi S, Mostaghimi J. Effects of HVOF process parameters on the properties of Ni-Cr coatings. Journal of thermal spray technology. 2010 Mar;19:521-530.
https://doi.org/10.1007/s11666-009-9464-5
[69] Yunanto AG. Influence of process parameters on HVOF coating quality: A review. ACMIT Proceedings. 2016;3(1):166-170.
https://doi.org/10.33555/acmit.v3i1.40
[70] Hasan M, Stokes J, Looney L, Hashmi MS. Deposition and characterization of HVOF thermal sprayed functionally graded coatings deposited onto a lightweight material. Journal of materials engineering and performance. 2009 Feb;18:66-69.
https://doi.org/10.1007/s11665-008-9251-3
[71] Henao J, Cruz-Bautista M, Hincapie-Bedoya J, Ortega-Bautista B, Corona-Castuera J, Giraldo-Betancur AL, Espinosa-Arbelaez DG, Alvarado-Orozco JM, Clavijo-Mejía GA, Trapaga-Martínez LG, Poblano-Salas CA. HVOF hydroxyapatite/titania-graded coatings: microstructural, mechanical, and in vitro characterization. Journal of Thermal Spray Technology. 2018 Dec;27:1302-1321.
https://doi.org/10.1007/s11666-018-0811-2
[72] Maev RG, Leshchynsky V. Air gas dynamic spraying of powder mixtures: theory and application. Journal of thermal spray technology. 2006 Jun;15:198-205.
https://doi.org/10.1361/105996306X108048
[73] Stoltenhoff T, Kreye H, Richter HJ. An analysis of the cold spray process and its coatings. Journal of Thermal spray technology. 2002 Dec;11:542-550.
https://doi.org/10.1361/105996302770348682
[74] Grujicic M, Zhao CL, Tong C, DeRosset WS, Helfritch D. Analysis of the impact velocity of powder particles in the cold-gas dynamic-spray process. Materials Science and Engineering: A. 2004 Mar 15;368(1-2):222-230.
https://doi.org/10.1016/j.msea.2003.10.312
[75] Zou Y, Qin W, Irissou E, Legoux JG, Yue S, Szpunar JA. Dynamic recrystallization in the particle/particle interfacial region of cold-sprayed nickel coating: Electron backscatter diffraction characterization. Scripta Materialia. 2009 Nov 1;61(9):899-902.
https://doi.org/10.1016/j.scriptamat.2009.07.020
[76] Gärtner F, Schmidt T, Stoltenhoff T, Kreye H. Recent developments and potential applications of cold spraying. Advanced Engineering Materials. 2006 Jul;8(7):611-618.
https://doi.org/10.1002/adem.200600048
[77] Assadi H, Kreye H, Gärtner F, Klassen TJ. Cold spraying–A materials perspective. Acta Materialia. 2016 Sep 1;116:382-407.
https://doi.org/10.1016/j.actamat.2016.06.034
[78] Rokni MR, Nutt SR, Widener CA, Champagne VK, Hrabe RH. Review of relationship between particle deformation, coating microstructure, and properties in high-pressure cold spray. Journal of thermal spray technology. 2017 Aug;26:1308-1355.
https://doi.org/10.1007/s11666-017-0575-0
[79] Yin S, Cavaliere P, Aldwell B, Jenkins R, Liao H, Li W, Lupoi R. Cold spray additive manufacturing and repair: Fundamentals and applications. Additive manufacturing. 2018 May 1;21:628-650.
https://doi.org/10.1016/j.addma.2018.04.017
[80] Grigoriev S, Okunkova A, Sova A, Bertrand P, Smurov I. Cold spraying: From process fundamentals towards advanced applications. Surface and coatings Technology. 2015 Apr 25;268:77-84.
https://doi.org/10.1016/j.surfcoat.2014.09.060
[81] Koivuluoto H, Lagerbom J, Kylmälahti M, Vuoristo P. Microstructure and mechanical properties of low-pressure cold-sprayed (LPCS) coatings. Journal of Thermal Spray Technology. 2008 Dec;17:721-727.
https://doi.org/10.1007/s11666-008-9245-6
[82] Winnicki M, Małachowska A, Baszczuk A, Rutkowska-Gorczyca M, Kukla D, Lachowicz M, Ambroziak A. Corrosion protection and electrical conductivity of copper coatings deposited by low-pressure cold spraying. Surface and Coatings Technology. 2017 May 25;318:90-98.
https://doi.org/10.1016/j.surfcoat.2016.12.101
[83] Winnicki M, Baszczuk A, Rutkowska-Gorczyca M, Małachowska A, Ambroziak A. Corrosion resistance of tin coatings deposited by cold spraying. Surface Engineering. 2016 Sep 1;32(9):691-700.
https://doi.org/10.1080/02670844.2016.1190064
[84] Peat T, Galloway A, Toumpis A, McNutt P, Iqbal N. The erosion performance of particle reinforced metal matrix composite coatings produced by co-deposition cold gas dynamic spraying. Applied Surface Science. 2017 Feb 28;396:1623-1634.
https://doi.org/10.1016/j.apsusc.2016.10.155
[85] Guillem-Marti J, Cinca N, Punset M, Cano IG, Gil FJ, Guilemany JM, Dosta S. Porous titanium-hydroxyapatite composite coating obtained on titanium by cold gas spray with high bond strength for biomedical applications. Colloids and Surfaces B: Biointerfaces. 2019 Aug 1;180:245-253.
https://doi.org/10.1016/j.colsurfb.2019.04.048
[86] Luo XT, Yang GJ, Li CJ. Multiple strengthening mechanisms of cold-sprayed cBNp/NiCrAl composite coating. Surface and Coatings Technology. 2011 Jul 15;205(20):4808-4813. https://doi.org/10.1016/j.surfcoat.2011.04.065
[87] Tekkaya AE, Kleiner M, Biermann D, Hiegemann L, Rausch S, Franzen V, Kwiatkowski L, Kersting P. Friction analysis of thermally sprayed coatings finished by ball burnishing and grinding. Production Engineering. 2013 Nov;7:601-610.
https://doi.org/10.1007/s11740-013-0485-z
[88] Zamani P, Valefi Z, Mirjani M. Effect of grinding and lubricating post-treatment on wear performance of plasma sprayed Cr2O3–Al2O3 composite coatings. Surfaces and Interfaces. 2019 Sep 1;16:206-214.
https://doi.org/10.1016/j.surfin.2018.10.002
[89] Davis JR, editor. Handbook of thermal spray technology. ASM international; 2004.
[90] Zhang SH, Yoon JH, Li MX, Cho TY, Joo YK, Cho JY. Influence of CO2 laser heat treatment on surface properties, electrochemical and tribological performance of HVOF sprayed WC–24% Cr3C2–6% Ni coating. Materials Chemistry and Physics. 2010 Feb 15;119(3):458-464.
https://doi.org/10.1016/j.matchemphys.2009.09.025
[91] Hao S, He D, Zhao L. Microstructure and corrosion resistance of FeCrAl coating after high current pulsed electron beam surface modification. Procedia Engineering. 2012 Jan 1;27:1700-1706.
https://doi.org/10.1016/j.proeng.2011.12.639
[92] Gontarz G, Golański D, Chmielewski T. Properties of Fe-Al type intermetallic layers produced by AC TIG method. Advances in Materials Science. 2013 Sep 1;13(3):5-16.
https://doi.org/10.2478/adms-2013-0007
[93] Ctibor P, Neufuss K, Zahalka F, Kolman B. Plasma sprayed ceramic coatings without and with epoxy resin sealing treatment and their wear resistance. wear. 2007 Apr 10;262(9-10):1274-1280.
https://doi.org/10.1016/j.wear.2007.01.005
[94] Caron N, Bianchi L, Méthout S. Development of a functional sealing layer for SOFC applications. Journal of Thermal Spray Technology. 2008 Dec;17(5-6):598-602.
https://doi.org/10.1007/s11666-008-9248-3
[95] Kamiński M, Budzyński P, Szala M, Turek M. Tribological properties of the Stellite 6 cobalt alloy implanted with manganese ions. InIOP Conference Series. Materials Science and Engineering. 2018 Oct;421:032012.
https://doi.org/10.1088/1757-899X/421/3/032012
[96] Steffens HD, Wielage B, Drozak J. Thermal spraying of composites—Manufacturing and post treatment. Microchimica Acta. 1990 Jan;101:81-89.
https://doi.org/10.1007/BF01244161
[97] Verdian MM. Finishing and post-treatment of thermal spray coatings. Elsevier, Amsterdam, (2016), 341.
[98] Stoica V, Ahmed R, Golshan M, Tobe S. Sliding wear evaluation of hot isostatically pressed thermal spray ceramet coatings. Journal of thermal spray technology. 2004 Mar;13:93-107. https://doi.org/10.1361/10599630418077
[99] Chraska T, Pala Z, Mušálek R, Medřický J, Vilémová M. Post-treatment of plasma-sprayed amorphous ceramic coatings by spark plasma sintering. Journal of Thermal Spray Technology. 2015 Apr;24:637-643.
https://doi.org/10.1007/s11666-015-0225-3