An Investigation of the Fatigue Corrosion Behavior of Al 6063-T6 Alloy under Seawater Influence
Subject Areas : Journal of Environmental Friendly MaterialsR. Abdollahi 1 , M. Hajisafari 2 , A. Zare Bidaki 3
1 - Department of Metallurgy and Materials Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran.
2 - Department of Metallurgy and Materials Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran.
3 - Department of Metallurgy and Materials Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran.
Keywords:
Abstract :
The purpose of the present study was to investigate the fatigue behavior of Al-6063 alloy using standard rotating-bending test. Corrosion-fatigue test on similar samples was also performed at stress levels corresponding to fatigue test. The samples obtained from fatigue tests were considered as control samples and the results obtained from fatigue test in air were compared to the results obtained from corrosion-fatigue test in liquid seawater. Scanning Electron Microscopy (SEM) and Optical Microscopy (OM) were used to investigate the micro-structural features and crack characteristics of the specimens. The results obtained from fatigue and corrosion-fatigue test revealed that the presence of corrosion environment decreases the fatigue life. Additionally, microstructure studies on the fracture surface due to corrosion-fatigue revealed that initiation of fatigue crack starts from the depth of corrosion steps and proliferate towards the sample center simultaneous with the penetration of liquid into the crack. Moreover, the appearance, size and propagation way of fatigue crack in corrosion-fatigue test was completely different from the cracks created in a fatigue test. The fracture surface due to corrosion-fatigue test was also different from the fatigue fracture surface. Further studies on failure levels revealed that the ratio of region area due to fatigue to the region area due to final failure was strongly decreased in the corrosion-fatigue test.
[1] N. V. Murthy, A. P. Reddy, N. Selvaraj and C. S. P. Rao, Int. J. Mech. Eng., 4(2015), 29.
[2] M. R. Bayumjt, Eng. Frac. Mech., 45(1993), 297.
[3] J. Kimberli, and D. W. Hoeppner. Int. J. Fatigue., 31 (2009), 686.
[4] A. G. M. Domínguez, J. L. Á. Ambriz and E. C. Calderón, Eng. Frac. Mech., 93(2012), 119.
[5] J. Kimberli and D. W. Hoeppner, Int. J. Fatigue., 31 (2009), 686.
[6] Q. Y. Wang, N. Kawagoishi and Q. Chen, Scripta Mater., 49(2003), 711.
[7] R. A., S. A. Abdul-Wahab Siddiqui, and T. Pervez, Mater. Des., 29(2008), 70.
[8] W. Onteiro, I. Espósito, R. Ferrari and S. Buso, Mater. Sci. Appl., 30(2011), 89.
[9] S. K. Panigrahi and R. Jayaganthan, Mater. Sci. Eng. A, 492(2008), 300.
[10] S. K. Panigrahi and R. Jayaganthan. J. Mater. Sci., 45(2010), 5624.
[11] O. I. Oluwole and J. A. Omotoyinbo, Mater. Res., 13(2010), 125.
[12] W. Klöpffer, Int. J. Life Cycle Assess, 17 (2012), 1087.
[13] S. K. Panigrahi, R. Jayaganthan and V. Chawla, Mater. Lett., 62(2008), 2626.
[14] T. S. Shih, Y. Hwa-Sheng and H. Wen-Nong, Metals, 6(2016), 51.
[15] H. Maruff, P. Nageswara Rao, D. Singh, R. Jayaganthan and S. Singh, Proced. Eng., 75(2014), 129.
[16] C. Joon-Yeon and A. Shan, Mater. Sci. Eng. A, 347(2003), 165.
[17] D. R. Fang, Z. F. Zhang, S. D. Wu, C. X. Huang, H. Zhang, N. Q. Zhao and J. J. Li., Mater. Sci. Eng. A, 426(2006), 305.
[18] M. D. Sangid, Int. J. Fatigue., 57(2013), 58.
[19] A. Vinogradov and H. Satoshi, Mater. Trans., 42(2001), 74.
[20] S. O. Adeosun, O. I. Sekunowo, S. A. Balogun, and V. D. Obiekea. Int. J. Corr., 2012(2012), 1.
[21] S. J. Price and B. F. Rita, Coat., 7(2017), 25.
[22] F. Walther, Mater. Test., 56(2014), 519.
[23] C. J. Villalobos-Gutiérrez, G. E. Gedler-Chacón, J. G. La Barbera-Sosa, A. Piñeiro, M. H. Staia, J. Lesage, D. Chicot, G. Mesmacque, and E. S. Puchi-Cabrera. Surf. Coat. Technol., 202(2008), 4572.
[24] Y.Q. Zheng, Z. Zhang, Fire Mater. 40(2016), 141.
[25] Z. Ling, Y.Li, Z.Luo, S. Ao, Z. Yin, Y. Gu, and Q. Chen, Int. J. Adv. Manuf. Technol. (2017), 1.
[26] N. Toric, J. Brnic, I. Boko, M. Brcic, I. W. Burgess and I. Uzelac, Metals, 7(2017), 1.
[27] K.J. Fann, and C.C. Chen, Appl. Sci., 7(2017), 372.
[28] ASTM B221, Standard Specification for Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire Profiles, and Tube,
[29] ASTM E466, Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials. 0301: Metals - Mechanical Testing; Elevated and Low-Temperature Tests; Metallography. West Conshohocken, (2015).