Recent Developments of Quantum Science in Laser Technologies, a Mini-Review
Subject Areas : Journal of Environmental Friendly MaterialsOmid Ashkani 1 , Mohammad Reza Tavighi 2 , Hamed Sabet 3
1 - Faculty of Technology and Engineering, Islamic Azad University, Science and Research Unit, Tehran, Iran
2 - PhD Candidate, Faculty of Materials Engineering Karaj Branch, Islamic Azad University Karaj, Iran.
3 - Dean of Engineering Faculty , Islamic Azad University, Karaj Branch
Keywords: Quantum Laser, Quantum Cascade Laser, Quantum Dots, Laser Diodes,
Abstract :
Nowadays, quantum science plays an important role in the development of various applications and systems one of the main ones being quantum lasers. InAs and Ge/GeAs material systems are among those that are of interest in the development of Quantum Cascade Lasers. Also, laser pointers based on quantum lasers are of interest and the development of quantum dot laser diodes is also discussed and developed. Due to the importance of this issue, in this research, in the form of a mini-review, the general aspects of quantum lasers and the latest advancements have been examined and analyzed. It is worth mentioning that lasers play an effective role in the development of various quantum dots, including carbon quantum dots. The purpose of this research is to summarize the latest research in the field of quantum lasers and also to review some of their applications in the development of various types of quantum dots, especially carbon quantum dots.
[1] Shishodia S, Chouchene B, Gries T, Schneider R. Selected I-III-VI2 Semiconductors: Synthesis, Prop. App. Photovoltaic (PV) Cells. Nanomater. 2023; 13(21):2889.
[2] Tandale P, Choudhary N, Singh J, Sharma A, Shukla A, Sriram P, Soni U, Singla N, Barnwal RP, Singh G, Kaur IP, Fluorescent quantum dots: An insight on synthesis and potential biological application as drug carrier in cancer. Biochem.Biophys Rep. 2021; 26:100962.
[3] He W, Wu YJ, Cui YN, Wang C, Liu X, Xiao B, Fluorescence modulation of quantum dots in subsurface defects of optical elements by a linearly polarized light. Applied Optics. 2024; 63(10):2570-2577.
[4] Hu L, Zhao Q, Huang S, Zheng J, Guan X, Patterson R, Kim J, Shi L, Lin CH, Lei Q, Chu D, Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture. Nat.Commun. 2021; 12(1):466.
[5] Ma YF, Wang YM, Wen J, Li A, Li XL, Leng M, Zhao YB, Lu ZH, Review of roll-to-roll fabrication techniques for colloidal quantum dot solar cells. J. Electron. Sci. Technol. 2023; 21(1):100189.
[6] Zhang Y, He Z, Tong X, Garrett DC, Cao R, Wang LV, Quantum imaging of biological organisms through spatial and polarization entanglement. Sci. Adv. 2024; 10(10):eadk1495.
[7] Badıllı U, Mollarasouli F, Bakirhan NK, Ozkan Y, Ozkan SA, Role of quantum dots in pharmaceutical and biomedical analysis, and its application in drug delivery. TrAC Trends in Analytic Chem. 2020; 131:116013.
[8] Romero Campelo A, (2021). Quantum dots: concept and application for image sensors.
[9] Şahin S, Ergüder Ö, Trabzon L, Ünlü C, Quantum dots for sensing applications. InFundamentals of Sensor Technol. 2023:443-473.
[10] Wu GY, Lue NY, Chang L, Graphene quantum dots for valley-based quantum computing: A feasibility study. Physical Review B—Condensed Matter and Materials Physics. 2011; 84(19):195463.
[11] Zhuo N, Liu F, Wang Z, Quantum cascade lasers: from sketch to mainstream in the mid and far infrared. J. Semicond. 2020; 41(1):010301.
[12] Kazarinov RF, Possibility of amplication of electromagnetic waves in a semiconductor with a superlattice. Sov. Phys. Semicond. 1971; 5(4):707-709.
[13] Faist J, Capasso F, Sivco DL, Sirtori C, Hutchinson AL, Cho AY, Quantum-Cascade laser. Sci. (QCLs) 1994; 264(5158):553-556.
[14] Razeghi M, High-performance InP-based mid-IR quantum cascade lasers. IEEE J. Sel. Top. Quantum Electron. 2009; 15(3):941-951.
[15] Paul DJ, The progress towards terahertz quantum cascade lasers on silicon substrates. Laser & Photonics Rev., 2010; 4(5):610-632.
[16] Baranov AN, Teissier R, Quantum cascade lasers in the InAs/AlSb material system. IEEE J. Sel. Top. Quantum Electron. 2015; 21(6):85-96.
[17] Baranov AN, Bahriz M, Teissier R, Room temperature continuous wave operation of InAs-based quantum cascade lasers at 15 µm. Opt.Express. 2016; 24(16):18799-187806.
[18] Loghmari Z, Bahriz M, Thomas DD, Meguekam A, Van HN, Teissier R, Baranov AN, Room temperature continuous wave operation of InAs/AlSb-based quantum cascade laser at λ∼ 11 µm. Electron. Lett. 2018; 54(17):1045-1047.
[19] Loghmari Z, Rodriguez JB, Baranov AN, Rio-Calvo M, Cerutti L, Meguekam A, Bahriz M, Teissier R, Tournié E, InAs-based quantum cascade lasers grown on on-axis (001) silicon substrate. APL Photonics. 2020; 5(4).
[20] Kinjalk K, Díaz-Thomas DA, Loghmari Z, Bahriz M, Teissier R, Baranov AN, Inas-based quantum cascade lasers with extremely low threshold. In Photonics. 2022; 9(10):747.
[21] Dinh TV, Valavanis A, Lever LJ, Ikonic Z, Kelsall RW, Density matrix modelling of Ge/GeSi bound-to-continuum terahertz quantum cascade lasers.
[22] Valavanis A, Dinh TV, Lever LJ, Ikonić Z, Kelsall RW, Material configurations for n-type silicon-based terahertz quantum cascade lasers. Physical Review B—Condensed Matter and Mater. Phys. (APS) 2011; 83(19):195321.
[23] Stark D, Mirza M, Persichetti L, Montanari M, Markmann S, Beck M, Grange T, Birner S, Virgilio M, Ciano C, Ortolani M, THz intersubband electroluminescence from n-type Ge/SiGe quantum cascade structures. Appl. Phys. Lett. 2021; 118(10).
[24] Teuber A, Caniglia G, Kranz C, Mizaikoff B, Graphene-enhanced quantum cascade laser infrared spectroscopy using diamond thin-film waveguides. Analyst. 2023; 148(20):5144-5151.
[25] Devenson J, Teissier R, Cathabard O, Baranov AN, InAs∕ AlSb quantum cascade lasers emitting below 3μm. Appl. Phys. Lett. 2007; 90(11).
[26] Moriyasu Y, Ohtani K, Ohnishi H, Ohno H, Above room-temperature operation of InAs/AlSb quantum cascade lasers. InPhotonic App. Sys. Technol. Conf. (ICAPT) 2007: JWA136.
[27] Devenson J, Teissier R, Cathabard O, Baranov AN, InAs-based quantum-cascade lasers. InNovel In-Plane Semicond. Lasers VII 2008; 6909:194-204.
[28] Kinjalk K, Díaz-Thomas DA, Meguekam A, Loghmari Z, Bahriz M, Teissier R, Baranov AN, Very low threshold InAs-based quantum cascade lasers. In2022 Int. Conf. Laser Optics (ICLO) 2022: 1-1.
[29] Ohtani K, Fujita K, Ohno H, InAs quantum cascade lasers based on coupled quantum well structures. Japanese J.Appl.Phys. (JJAP) 2005; 44(4S):2572.
[30] Montanari M, Virgilio M, Manganelli CL, Zaumseil P, Zoellner MH, Hou Y, Schubert MA, Persichetti L, Di Gaspare L, De Seta M, Vitiello E, Photoluminescence study of interband transitions in few-layer, pseudomorphic, and strain-unbalanced Ge/GeSi multiple quantum wells. Phys. Rev. B. (PRB) 2018; 98(19):195310.
[31] Ciano C, Virgilio M, Montanari M, Persichetti L, Di Gaspare L, Ortolani M, Baldassarre L, Zoellner MH, Skibitzki O, Scalari G, Faist J, Control of electron-state coupling in asymmetric Ge/Si-Ge quantum wells. Phys. Rev. Appl. 2019; 11(1):014003.
[32] Liang G, Hu X, Yu X, Shen Y, Li LH, Davies AG, Linfield EH, Liang HK, Zhang Y, Yu SF, Wang QJ, Integrated terahertz graphene modulator with 100% modulation depth. ACS photonics. 2015; 2(11):1559-1566.
[33] Degl’Innocenti R, Jessop DS, Sol CW, Xiao L, Kindness SJ, Lin H, Zeitler JA, Braeuninger-Weimer P, Hofmann S, Ren Y, Kamboj VS, Fast modulation of terahertz quantum cascade lasers using graphene loaded plasmonic antennas. Acs Photonics. 2016; 3(3):464-470.
[34] Coldren LA, Corzine SW, Mashanovitch ML, Diode lasers and photonic integrated circuits. John Wiley & Sons; 2012.
[35] Sakamoto M, Applications of High-Power Laser Diodes in Telecommunications and Printing Industries. Rev. Laser Eng. 2000; 28(4):226-230.
[36] Meliga M, Semiconductor laser sources for datacom and telecom applications: recent trends.
[37] Bolshov MA, Kuritsyn YA, Romanovskii YV, Tunable diode laser spectroscopy as a technique for combustion diagnostics. SpectrochimActa Part B: At Spectrosc. 2015; 106:45-66.
[38] Tariq A, Islam T, Javed J, Sayyad MH, Design and characterization of a 3D-printer-based diode laser engraver. In SecondiiScience International Conference 2021: Recent Adv. Photonics Phys. Sci. 2021; 11877:46-51.
[39] Borzabadi-Farahani A, A scoping review of the efficacy of diode lasers used for minimally invasive exposure of impacted teeth or teeth with delayed eruption. InPhotonics, 2022; 9(4):265.
[40] Borzabadi-Farahani A, Laser use in muco-gingival surgical orthodontics. Lasers in Dentistry—Current Concepts. 2024:379-398.
[41] Lin J, He G, Hu Y, Huang J, Advances in Colloidal Quantum Dot Laser Diodes. InOpto-Electron-Recent Adv. 2023. Intech Open.
[42] Zhukov AE, Kovsh AR, Quantum dot diode lasers for optical communication systems. Quantum Electron. 2008; 38(5):409.
[43] Jung H, Ahn N, Klimov VI, Prospects and challenges of colloidal quantum dot laser diodes. Nat. Photonics. 2021; 15(9):643-655.
[44] Ahn N, Park YS, Livache C, Du J, Gungor K, Kim J, Klimov VI, Optically Excited Lasing in a Cavity-Based, High-Current-Density Quantum Dot Electroluminescent Device. Adv. Mater. 2023; 35(9):2206613.
[45] Prasad S, Saleh,Al-Hesseny H, Al-Salhi MS, Devaraj D, Masilamai V, A high power, frequency tunable colloidal quantum dot (CdSe/ZnS) laser. Nanomater. (Nm) 2017; 7(2):29.
[46] Kozlov OV, Park YS, Roh J, Fedin I, Nakotte T, Klimov VI, Sub–single-exciton lasing using charged quantum dots coupled to a distributed feedback cavity. Sci. 2019; 365(6454):672-675.
[47] le Feber B, Prins F, De Leo E, Rabouw FT, Norris DJ, Colloidal-quantum-dot ring lasers with active color control. Nano letters. 2018; 18(2):1028-1034.
[48] Wang YC, Yuan CT, Yang YC, Wu MC, Tang J, Shih MH, High efficiency silicon nanodisk laser based on colloidal CdSe/ZnS QDs. Nano Rev.2011; 2(1):7275.
[49] Gao S, Zhang C, Liu Y, Su H, Wei L, Huang T, Dellas N, Shang S, Mohney SE, Wang J, Xu J, Lasing from colloidal InP/ZnS quantum dots. Optics Express. 2011; 19(6):5528-5535.
[50] Roh K, Dang C, Lee J, Chen S, Steckel JS, Coe-Sullivan S, Nurmikko A, Surface-emitting red, green, and blue colloidal quantum dot distributed feedback lasers. Optics Express. 2014; 22(15):18800-18806.
[51] GhasempourArdakani A, Rafieipour P, Samimipour MJ, Tashkhourian J. Fabrication of a dye-based random laser using ZnS: Mn quantum dots and investigating the effects of their concentration. Iran. J. Phys. Res. 2021; 21(3):117-125.
[52] Treps N, Grosse N, Bowen WP, Fabre C, Bachor HA, Lam PK. A quantum laser pointer. Sci. 2003; 301(5635):940-943.
[53] Bachor HA, Bowen WP, Grosse N, Buchler B, Andersen U, Schnabel R, Lam PK, Treps N, Fabre C, Maitre A, Quantum laser pointer and other applications of squeezed light. In Quantum Commun. Quantum Imaging 2004; 5161:17-25.
[54] Nojeh A, Carbon nanotube photothermionics: Toward laser-pointer-driven cathodes for simple free-electron devices and systems. MRS Bulletin. 2017; 42(7):500-504.
[55] Cortes FR, Falomir E, Lancis J, Mínguez-Vega G, Pulsed laser fragmentation synthesis of carbon quantum dots (CQDs) as fluorescent probes in non-enzymatic glucose detection. Appl. Surf. Sci. 2024; 665:160326.
[56] Zhang Y, Lu S, Lasing of carbon dots: Chemical design, mechanisms, and bright future. Chem. 2024; 10(1):134-171.
[57] Doñate-Buendia C, Torres-Mendieta R, Pyatenko A, Falomir E, Fernández-Alonso M, Mínguez-Vega G, Fabrication by laser irradiation in a continuous flow jet of carbon quantum dots for fluorescence imaging. ACS omega. 2018; 3(3):2735-2742.
[58] Arakawa Y, Nakamura T, Kwoen J, Quantum dot lasers for silicon photonics. In Semiconductors and Semimetals 2019; 101:91-138.
[59] Ashkani O, Role of Graphene Nano-Dots (GDs) in Developing and Efficiency of Solar Cells. Determ in Nanomed & Nanotech. 2024; 3(3):000562.
[60] Zhang ZX, Li Z, Chai J, Dai Y, Chen Y, Xie Y, Zhang Q, Liu D, Fan X, Lan S, Ma Y, Graphene quantum dots enhanced graphene/Si deep ultraviolet avalanche photodetectors. IEEE Electron Device Lett. 2024.