مدلسازی ساختاری تفسیری عوامل اثرگذار بر مشارکت دانشجویان در آموزش مجازی دانشگاه آزاد اسلامی
محورهای موضوعی : مدیریت آموزشیسهیل دادفر 1 * , علیرضا پورابراهیمی 2
1 - دانشجوی دکتری مدیریت فناوری اطلاعات و ارتباطات، دانشگاه آزاد اسلامی واحد کیش
2 - Islamic Azad University
کلید واژه: مشارکت دانشجویان, آموزش مجازی, آموزش عالی,
چکیده مقاله :
همهگیری کووید-19 مؤسسات آموزش عالی را مجبور کرد که فعالیتهای آموزش مجازی را بر اساس پلتفرمهای مجازی پیادهسازی کنند. بر این اساس، دانشگاهها زمان کمی برای آمادهسازی و آموزش اعضای هیئت علمی و آشنایی دانشجویان با فناوریهای دیجیتال داشتند و مشارکت دانشجویان در این نوع آموزش تحت تاثیر متغیرهای زیادی قرار گرفته است. هدف پژوهش حاضر، مدلسازی ساختاری تفسیری عوامل اثرگذار بر مشارکت دانشجویان در آموزش مجازی دانشگاه است. روش تحقیق، آميخته (کیفی- کمی) است. در بخش کیفی با استفاده از رویکرد کیفی عوامل اثرگذار بر مشارکت دانشجویان در آموزش مجازی شناسایی شدند. گردآوری دادهها از طریق مصاحبه با متخصصان و خبرگان آموزش مجازی در دانشگاهها صورت گرفته است. در بخش کمی، با استفاده از مدلسازی ساختاری تفسیری به سطحبندی عوامل شناسایی شده پرداخته شده است. بر اساس یافتههای بخش کیفی، عوامل اثرگذار شامل 10 عامل زیرساختهای دانشگاه، رویکردهای یادگیری، عوامل رفتاری، ویژگی های فردی، نگرش دانشجویان نسبت به آموزش مجازی، منابع آموزشی، حمایت اساتید، پشتیبانی آموزش مجازی دانشگاه، مهارتهای دانشجویان، وضعیت مالی دانشجویان بودند. بر اساس نتایج مدلسازی ساختاری تفسیری بیشترین وابستگی در عوامل مهارتهای دانشجویان، نگرش دانشجویان، ویژگیهای فردی، عوامل رفتاری بود. کمترین وابستگی در عامل رویکردهای یادگیری بود که از بالاترین نقش در مشارکت دانشجویان در آموزش مجازی دانشگاه برخوردار بود.
The Covid-19 pandemic forced higher education institutions to implement virtual learning activities based on virtual platforms. Accordingly, universities had little time to prepare and train faculty members and familiarize students with digital technologies, and students' engagement in this type of education affected by many variables. The aim of the research is the interpretative structural modeling of the factors affecting the students' engagement in the virtual education of the university. The research method is mixed (qualitative-quantitative). In the qualitative section, using a qualitative approach, the factors affecting students' participation in virtual education were identified. Data collection done through interviews with virtual education specialists and experts in universities. In the quantitative part, the identified factors leveling using interpretative structural modeling. Based on the findings of the qualitative section, the influencing factors included 10 university infrastructure factors, learning approaches, behavioral factors, individual characteristics, students' attitude towards virtual education, educational resources, professors' support, university virtual education support, students' skills, students' financial status. According to the results of interpretative structural modeling, the most dependent factors were students' skills, students' attitudes, individual characteristics, and behavioral factors. The least dependence was on the factor of learning approaches, which had the highest role in students' engagement in university virtual education.
Abad-Segura, E., González-Zamar, M. D., Infante-Moro, J. C., & Ruipérez García, G. (2020). Sustainable management of digital transformation in higher education: Global research trends. Sustainability, 12(5), 2107.
Artino Jr, A. R. (2010). Online or face-to-face learning? Exploring the personal factors that predict students' choice of instructional format. The Internet and Higher Education, 13(4), 272-276.
Attri, R., Dev, N., & Sharma, V. (2013). Interpretive structural modelling (ISM) approach: an overview. Research journal of management sciences, 2319(2), 1171.
Bao, W. (2020). COVID‐19 and online teaching in higher education: A case study of Peking University. Human behavior and emerging technologies, 2(2), 113-115.
Chakraborty, M., & Muyia Nafukho, F. (2014). Strengthening student engagement: what do students want in online courses? European Journal of Training and Development, 38(9), 782-802.
Chaw, L. Y., & Tang, C. M. (2018). What makes learning management systems effective for learning?. Journal of Educational Technology Systems, 47(2), 152-169.
Chen, P. S. D., Lambert, A. D., & Guidry, K. R. (2010). Engaging online learners: The impact of Web-based learning technology on college student engagement. Computers & Education, 54(4), 1222-1232.
Dixson, M. D. (2015). Measuring student engagement in the online course: The Online Student Engagement scale (OSE). Online Learning, 19(4), n4.
Fazza, H., & Mahgoub, M. (2021). Student engagement in online and blended learning in a higher education institution in the Middle East: Challenges and solutions. Studies in technology enhanced learning, 1(2).
Hussain Al-Qahtani, M. (2019). Teachers’ and students’ perceptions of virtual classes and the effectiveness of virtual classes in enhancing communication skills. Arab World English Journal (AWEJ) Special Issue: The Dynamics of EFL in Saudi Arabia.
Lee, K. (2020). Coronavirus: universities are shifting classes online–but it’s not as easy as it sounds. The Conversation, 9, 2020.
Liesa-Orús, M., Latorre-Cosculluela, C., Vázquez-Toledo, S., & Sierra-Sánchez, V. (2020). The technological challenge facing higher education professors: Perceptions of ICT tools for developing 21st century skills. Sustainability, 12(13), 5339.
Mahlow, C., & Hediger, A. (2019). Digital transformation in higher education-buzzword or opportunity? eLearn Mag., 2019(5), 13.
Makrakis, V. (2017). Unlocking the potentiality and actuality of ICTs in developing sustainability-justice curricula and society. Knowledge Cultures, 5(02), 103-122.
Mann, J. T., & Henneberry, S. R. (2014). Online versus face-to-face: Students' preferences for college course attributes. Journal of Agricultural and Applied Economics, 46(1), 1-19.
Mansfield, M. (2019). The best learning management systems in higher education. Blog post]. Pagely, September, 12.
Monroy García, F. A., Llamas-Salguero, F., Fernández-Sánchez, M. R., & Carrión del Campo, J. L. (2020). Digital technologies at the pre-university and university levels. Sustainability, 12(24), 10426.
MUNALA, L. A. (2020). SOCIO-ECONOMIC FACTORS AFFECTING STUDENTS’PARTICIPATION IN VIRTUAL CLASSES OF GRETSA UNIVERSITY, THIKA SUB-COUNTY, KENYA.
Murphy, L., Eduljee, N. B., & Croteau, K. (2020). College student transition to synchronous virtual classes during the COVID-19 pandemic in Northeastern United States. Pedagogical Research, 5(4).
Pinto, M., & Leite, C. (2020). Digital technologies in support of students learning in Higher Education: literature review. Digital education review, (37), 343-360.
Sahu, P. (2020). Closure of universities due to coronavirus disease 2019 (COVID-19): impact on education and mental health of students and academic staff. Cureus, 12(4).
Salas‐Pilco, S. Z., Yang, Y., & Zhang, Z. (2022). Student engagement in online learning in Latin American higher education during the COVID‐19 pandemic: A systematic review. British Journal of Educational Technology, 53(3), 593-619.
Salas‐Pilco, S. Z., Yang, Y., & Zhang, Z. (2022). Student engagement in online learning in Latin American higher education during the COVID‐19 pandemic: A systematic review. British Journal of Educational Technology, 53(3), 593-619.
Smart, K. L., & Cappel, J. J. (2006). Students’ perceptions of online learning: A comparative study. Journal of Information Technology Education: Research, 5(1), 201-219.
Stodel, E. J., Thompson, T. L., & MacDonald, C. J. (2006). Learners' perspectives on what is missing from online learning: Interpretations through the community of inquiry framework. International Review of Research in Open and Distributed Learning, 7(3), 1-24.
Wu, Z. (2020, September). How a top Chinese university is responding to coronavirus? In World Economic Forum (Vol. 5, No. 3, pp. 1-11).