ارائه مدلی دادهمحور برای زمانبندی و تعیین توالی وظایف درسیستمهای تولید منطبق بر صنعت 4.0 با جریان کارگاهی
محورهای موضوعی : صنعتیدانیال حاتمی 1 , علیرضا ایرج پور 2 * , رضا احتشام راثی 3
1 - دانشجوی دکتری، گروه مدیریت صنعتی، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران
2 - گروه مدیریت صنعتی، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران
3 - گروه مدیریت صنعتی، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران
کلید واژه: توالی وظایف, جریان کارگاهی , زمانبندی, صنعت 4.0, مدل دادهمحور ,
چکیده مقاله :
مساله زمانبندی و توالی جریان کارگاهی همواره مساله مهمی در تمامی صنایع و کارخانهها میباشد که با ظهور الگوهای مختلف تغییرات اساسی در آن رخ میدهد. این مقاله تلاش میکند مساله زمانبندی و تعیین توالی وظایف در سیستمهای تولید با جریان کارگاهی را متناسب با مولفههای انقلاب صنعتی چهارم مورد بررسی و تحلیل قرار دهد. در ابتدا یک مدل برنامهریزی ریاضی چند هدفه دادهمحور ارائه شد که به دنبال کمینه کردن زمان ساخت، تاخیر کلی و مصرف انرژی کلی میباشد. سپس، برای مقابله با عدم قطعیت، در این مطالعه از یک رویکرد بهینهسازی استوار دادهمحور برای نخستین بار در مسائل جریان کارگاهی استفاده شده است. پارامترهای مهم مدل با استفاده از الگوریتمهای SARIMA و SVR برآورد شده و سپس مدل مساله با استفاده از چند الگوریتم فراابتکاری ترکیبی حل گردید. نوآوری اصلی این مقاله ارائه رویکرد بهینهسازی دادهمحور استوار و استفاده از الگوریتم SVR در برآورد پارامتر و بررسی تاثیر مولفههای انقلاب صنعتی چهارم بر بهینهسازی جریان کارگاهی میباشد. نتایج نشان داد که LP-GA-SA توسعه یافته بهترین عملکرد را بر اساس معیار کیفیت پاسخها در مسائل آزمایشی با اندازههای کوچک و بزرگ دارد. دو مساله اصلی که صنعت 4.0 بر جریان کارگاهی تاثیر مستقیم میگذارد ضریب یادگیری و نرخ زوالپذیری میباشد که طبق تحلیل حساسیت مشاهده میشود افزایش ضریب یادگیری که به دلیل استفاده از فناوریهای صنعت 4.0 حاصل میشود موجب بهبود تمامی توابع هدف میشود. همچنین اثر زوالپذیری را نیز حداقل کرده که مجددا موجب بهبود توابع هدف میگردد.
The issue of scheduling flow shop is always an important issue in all industries and factories, which undergoes fundamental changes with the emergence of different paradigms. This article aimed to analyze the problem of scheduling and determining the sequence of tasks in production systems with flow shop according to the components of the industry4.0. For this purpose, a data-driven model and its integration with meta-heuristic hybrid algorithms are presented to solve the problem. In the first step the problem model is designed and to deal with uncertainty the data-driven robust optimization approach has been used for the first time in flow shop problems. The important parameters of the model were estimated using SARIMA and SVR algorithms, and then the problem model was solved using hybrid algorithms, and the findings showed that LP-GA-SA algorithm has the best performance. The main innovation of this article is to present a data-driven optimization approach and use the SVR algorithm in parameter estimation and investigate the impact of industry4.0 on flow shop optimization. The findings show that the use of robotics and AI from Industry 4.0 in the flow shop will improve the execution time and costs in the long run. The two main issues that Industry 4.0 directly affects the workshop flow are the learning coefficient and the deterioration rate. The increase in the learning coefficient that is obtained due to the use of Industry 4.0 technologies improves all the target functions. It also minimizes the deterioration effect, which again improves the target functions.
[1] Y. Fu, M. Zhou, X. Guo, and L. Qi, “Scheduling Dual-Objective Stochastic Hybrid Flow Shop with Deteriorating Jobs via Bi-Population Evolutionary Algorithm,” IEEE Trans. Syst. Man, Cybern. Syst., vol. 50, no. 12, pp. 5037–5048, Apr. 2020, doi: 10.1109/TSMC.2019.2907575.
[2] Y. Wang and N. Xie, “Flexible flow shop scheduling with interval grey processing time,” Grey Syst., vol. 11, no. 4, pp. 779–795, Dec. 2021, doi: 10.1108/GS-09-2020-0123.
[3] D. Yüksel, M. F. Taşgetiren, L. Kandiller, and L. Gao, “An energy-efficient bi-objective no-wait permutation flowshop scheduling problem to minimize total tardiness and total energy consumption,” Comput. Ind. Eng., vol. 145, p. 106431, Apr. 2020, doi: 10.1016/j.cie.2020.106431.
[4] W. Shao, Z. Shao, and D. Pi, “Effective constructive heuristics for distributed no-wait flexible flow shop scheduling problem,” Comput. Oper. Res., vol. 136, p. 105482, Dec. 2021, doi: 10.1016/j.cor.2021.105482.
[5] M. Tavakoli, S. A. Torabi, M. GhanavatiNejad, and S. Nayeri, “An integrated decision-making framework for selecting the best strategies of water resources management in pandemic emergencies,” Sci. Iran., vol. 0, no. 0, pp. 0–0, 2023, doi: 10.24200/sci.2023.57127.5077.
[6] M. Fatih Tasgetiren, D. Yüksel, L. Gao, Q. K. Pan, and P. Li, “A discrete artificial bee colony algorithm for the energy-efficient no-wait flowshop scheduling problem,” Procedia Manuf., vol. 39, pp. 1223–1231, 2019, doi: 10.1016/j.promfg.2020.01.347.
[7] M. S. Salehi Mir and J. Rezaeian, “A robust hybrid approach based on particle swarm optimization and genetic algorithm to minimize the total machine load on unrelated parallel machines,” Appl. Soft Comput. J., vol. 41, pp. 488–504, Jan. 2016, doi: 10.1016/j.asoc.2015.12.035.
[8] S. Nayeri, S. Ali Torabi, M. Tavakoli, and Z. Sazvar, “A multi-objective fuzzy robust stochastic model for designing a sustainable-resilient-responsive supply chain network,” J. Clean. Prod., vol. 311, p. 127691, 2021, doi: 10.1016/j.jclepro.2021.127691.
[9] J. Pei, Y. Zhou, P. Yan, and P. M. Pardalos, “A concise guide to scheduling with learning and deteriorating effects,” Int. J. Prod. Res., vol. 61, no. 6, pp. 2010–2031, Mar. 2023, doi: 10.1080/00207543.2022.2049911.
[10] D. Biskup, “Single-machine scheduling with learning considerations,” Eur. J. Oper. Res., vol. 115, no. 1, pp. 173–178, 1999, doi: 10.1016/S0377-2217(98)00246-X.
[11] B. Alidaee and N. K. Womer, “Scheduling with time dependent processing times: Review and extensions,” J. Oper. Res. Soc., vol. 50, no. 7, pp. 711–720, Jul. 1999, doi: 10.1057/palgrave.jors.2600740.
[12] H. Gholizadeh, H. Fazlollahtabar, and M. Khalilzadeh, “A robust fuzzy stochastic programming for sustainable procurement and logistics under hybrid uncertainty using big data,” J. Clean. Prod., vol. 258, p. 120640, 2020, doi: 10.1016/j.jclepro.2020.120640.
[13] D. A. Rossit, A. Toncovich, D. G. Rossit, and S. Nesmachnow, “Solving a flow shop scheduling problem with missing operations in an Industry 4.0 production environment,” J. Proj. Manag., vol. 6, no. 1, pp. 33–44, Jan. 2021, doi: 10.5267/j.jpm.2020.10.001.
[14] M. Rostami and A. Yousefzadeh, “A gamified teaching–learning based optimization algorithm for a three-echelon supply chain scheduling problem in a two-stage assembly flow shop environment,” Appl. Soft Comput., vol. 146, p. 110598, 2023, doi: 10.1016/j.asoc.2023.110598.
[15] Y. Fu, J. Ding, H. Wang, and J. Wang, “Two-objective stochastic flow-shop scheduling with deteriorating and learning effect in Industry 4.0-based manufacturing system,” Appl. Soft Comput. J., vol. 68, pp. 847–855, 2018, doi: 10.1016/j.asoc.2017.12.009.
[16] J. Q. Li et al., “Hybrid artificial bee colony algorithm for a parallel batching distributed flow-shop problem with deteriorating jobs,” IEEE Trans. Cybern., vol. 50, no. 6, pp. 2425–2439, 2020, doi: 10.1109/TCYB.2019.2943606.
[17] E. B. Tirkolaee, A. Mardani, Z. Dashtian, M. Soltani, and G. W. Weber, “A novel hybrid method using fuzzy decision making and multi-objective programming for sustainable-reliable supplier selection in two-echelon supply chain design,” J. Clean. Prod., vol. 250, p. 119517, 2020, doi: 10.1016/j.jclepro.2019.119517.
[18] M. Ghaleb, H. Zolfagharinia, and S. Taghipour, “Real-time production scheduling in the Industry-4.0 context: Addressing uncertainties in job arrivals and machine breakdowns,” Comput. Oper. Res., vol. 123, p. 105031, Jun. 2020, doi: 10.1016/j.cor.2020.105031.
[19] H. X. Qin et al., “An improved iterated greedy algorithm for the energy-efficient blocking hybrid flow shop scheduling problem,” Swarm Evol. Comput., vol. 69, p. 100992, 2022, doi: 10.1016/j.swevo.2021.100992.
[20] F. Zhao, D. Shao, L. Wang, T. Xu, N. Zhu, and Jonrinaldi, “An effective water wave optimization algorithm with problem-specific knowledge for the distributed assembly blocking flow-shop scheduling problem,” Knowledge-Based Syst., vol. 243, p. 108471, 2022, doi: 10.1016/j.knosys.2022.108471.
[21] M. Seyedhamzeh, H. Amoozad Khalili, S. M. H. Hosseini, M. Honarmand Azimi, and K. Rahmani, “Investigating the two-stage assembly flow shop scheduling problem with uncertain assembling times,” J. Ind. Syst. Eng., vol. 14, no. 2, pp. 245–267, 2022, [Online]. Available: https://www.jise.ir/article_147292.html
[22] J. Castaneda, X. A. Martin, M. Ammouriova, J. Panadero, and A. A. Juan, “A Fuzzy Simheuristic for the Permutation Flow Shop Problem under Stochastic and Fuzzy Uncertainty,” Mathematics, vol. 10, no. 10. 2022. doi: 10.3390/math10101760.
[23] Y. J. Wang, G. G. Wang, F. M. Tian, D. W. Gong, and W. Pedrycz, “Solving energy-efficient fuzzy hybrid flow-shop scheduling problem at a variable machine speed using an extended NSGA-II,” Eng. Appl. Artif. Intell., vol. 121, p. 105977, 2023, doi: 10.1016/j.engappai.2023.105977.
[24] M. Talaei, B. Farhang Moghaddam, M. S. Pishvaee, A. Bozorgi-Amiri, and S. Gholamnejad, “A robust fuzzy optimization model for carbon-efficient closed-loop supply chain network design problem: A numerical illustration in electronics industry,” J. Clean. Prod., vol. 113, pp. 662–673, 2016, doi: 10.1016/j.jclepro.2015.10.074.
[25] Z. Sazvar, K. Tafakkori, N. Oladzad, and S. Nayeri, “A capacity planning approach for sustainable-resilient supply chain network design under uncertainty: A case study of vaccine supply chain,” Comput. Ind. Eng., vol. 159, p. 107406, Jun. 2021, doi: 10.1016/j.cie.2021.107406.
[26] S. Nayeri, M. M. Paydar, E. Asadi-Gangraj, and S. Emami, “Multi-objective fuzzy robust optimization approach to sustainable closed-loop supply chain network design,” Comput. Ind. Eng., vol. 148, p. 106716, Aug. 2020, doi: 10.1016/j.cie.2020.106716.
[27] M. Tavakoli, R. Tavakkoli-Moghaddam, R. Mesbahi, M. Ghanavati-Nejad, and A. Tajally, “Simulation of the COVID-19 patient flow and investigation of the future patient arrival using a time-series prediction model: a real-case study,” Med. Biol. Eng. Comput., vol. 60, no. 4, pp. 969–990, 2022, doi: 10.1007/s11517-022-02525-z.
[28] P. P. Dabral and M. Z. Murry, “Modelling and Forecasting of Rainfall Time Series Using SARIMA,” Environ. Process., vol. 4, no. 2, pp. 399–419, Jun. 2017, doi: 10.1007/s40710-017-0226-y.
[29] Z. Alizadeh, A. Jalilzadeh, and F. Yousefian, “Randomized Lagrangian stochastic approximation for large-scale constrained stochastic Nash games,” Optim. Lett., 2023, doi: 10.1007/s11590-023-02079-5.
[30] A. Kumar Dubey, A. Kumar, V. García-Díaz, A. Kumar Sharma, and K. Kanhaiya, “Study and analysis of SARIMA and LSTM in forecasting time series data,” Sustain. Energy Technol. Assessments, vol. 47, Jul. 2021, doi: 10.1016/j.seta.2021.101474.