بررسی تأثیر کوئرستین بر میزان زنده مانی سلول های سرطان سینه MCF-7 با آزمون های MTT و تریپان بلو
محورهای موضوعی :
زیست شناسی سلولی تکوینی گیاهی و جانوری ، تکوین و تمایز ، زیست شناسی میکروارگانیسم
فاطمه زهره
1
,
کاظم پریور
2
*
,
نسیم حیاتی رودباری
3
,
پریچهر یغمایی
4
1 - گروه زیست شناسی، دانشکده علوم پایه، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - گروه زیست شناسی، دانشکده علوم پایه، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی
3 - گروه زیست شناسی، دانشکده علوم پایه، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
4 - گروه زیست شناسی، دانشکده علوم پایه، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
تاریخ دریافت : 1401/03/07
تاریخ پذیرش : 1401/05/18
تاریخ انتشار : 1402/09/01
کلید واژه:
سرطان سینه,
کوئرستین,
آزمون MTT,
MCF-7,
HEK,
چکیده مقاله :
در این مطالعه ، اثر کوئرستین بر زنده مانی سلولهای سرطانی با استفاده از آزمون های MTT و تریپان بلو مورد بررسی قرار گرفت. کوئرستین فلاونولی می باشد که دارای خواص آنتی اکسیدانی بوده و در میوه ها، سبزیجات و بویژه دانه های رنگی یافت می شود. سلول های سرطانی سینه(رده MCF-7) و سلول های سالم(ردهHEK-293 ) به مدت 24 و 48 ساعت در معرض دوزهای 50 و 100 μM از کوئرستین قرار گرفتند. برای بررسی میزان زنده مانی سلول های سرطانی آزمایش های MTT و تریپان بلو انجام شدند. بر اساس نتایج ، میزان بقای سلولهای سرطانی تحت تیمار دارو با دوز Q50 μM در 48 ساعت به طور قابل توجهی کاهش یافت (P <0.01). همچنین کاهش قابل توجهی در دوز Q100 μM در 24 و 48 ساعت مشاهده شد. این کاهش در 24 ساعت در P <0.05 و در 48 ساعت در P <0.01 معنی دار بود. نتایج آزمایشات اثرات مثبت ضد سرطانی کوئرستین را نشان داد. بر اساس نتایج این پژوهش ، کوئرستین میزان زنده مانی سلول های سرطانی را کاهش داد و بهترین نتیجه در 48 ساعت مشاهده شد. با توجه به اینکه تاثیرات ضد سرطانی داروی کوئرستین پس از 48 ساعت بیشتر بود، استفاده طولانی مدت این دارو برای دستیابی به اثرات درمانی آن توصیه می شود.
چکیده انگلیسی:
In this study, the effect of quercetin on the survival of cancer cells was investigated using MTT and trypan blue tests. Quercetin is a flavonol that has antioxidant properties and is found in fruits, vegetables, and especially colored seeds. Breast cancer cells (MCF-7 cell line) and healthy cells (HEK-293 cell line) were exposed to 50 and 100 micromolar doses of quercetin for 24 and 48 hours.To check the viability of cancer cells, MTT and trypan blue tests were performed. According to the results, the survival rate of cancer cells with Q50 μM dose in 48 hours was significantly decreased in the surface (P < 0.01). Also, a significant decrease was observed in Q100 μM dose at 24 and 48 hours. This decrease was significant at 24 hours at P < 0.05 and at 48 hours at P < 0.01. The results of tests showed the positive anti-cancer effects of quercetin. Based on the results of this research, quercetin reduced the survival rate of cancer cells and the best result was observed in 48 hours. Considering that the anti-cancer effects of quercetin were greater after 48 hours, long-term use of this drug is recommended to achieve its therapeutic effects.
منابع و مأخذ:
Mousavi, S.M., Gouya, M.M., Ramazani, R., Davanlou, M., Hajsadeghi, N. and Seddighi, Z. Cancer incidence and mortality in Iran. Annals of oncology 2009; 20(3), pp.556-563.
Harirchi, I., Karbakhsh, M., Kashefi, A. and Momtahen, A.J. Breast cancer in Iran: results of a multi-center study. Asian pacific journal of cancer prevention 2004; 5(1), pp.24-27.
Taplin, S.H., Ichikawa, L., Yood, M.U., Manos, M.M., Geiger, A.M., Weinmann, S., Gilbert, J., Mouchawar, J., Leyden, W.A., Altaras, R. and Beverly, R.K. Reason for late-stage breast cancer: absence of screening or detection, or breakdown in follow-up? Journal of the National Cancer Institute 2004; 96(20), pp.1518-1527.
Wilken, R., Veena, M.S., Wang, M.B. and Srivatsan, E.S. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Molecular cancer 2011; 10(1), pp.1-19.
Verkooijen, H.M., Fioretta, G., Pache, J.C., Franceschi, S., Raymond, L., Schubert, H. and Bouchardy, C. Diagnostic changes as a reason for the increase in papillary thyroid cancer incidence in Geneva, Switzerland. Cancer Causes & Control 2003; 14(1), pp.13-17.
Jenab, M., Bueno-de-Mesquita, H.B., Ferrari, P., van Duijnhoven, F.J., Norat, T., Pischon, T., Jansen, E.H., Slimani, N., Byrnes, G., Rinaldi, S. and Tjønneland, A. Association between pre-diagnostic circulating vitamin D concentration and risk of colorectal cancer in European populations: a nested case-control study. Bmj 2010; 340.
Pelicano, H., Carney, D. and Huang, P. ROS stress in cancer cells and therapeutic implications. Drug resistance updates 2004; 7(2), pp.97-110.
Hsieh, T.C., Wijeratne, E.K., Liang, J.Y., Gunatilaka, A.L. and Wu, J.M. Differential control of growth, cell cycle progression, and expression of NF-κB in human breast cancer cells MCF-7, MCF-10A, and MDA-MB-231 by ponicidin and oridonin, diterpenoids from the chinese herb Rabdosia rubescens. Biochemical and biophysical research communications 2005; 337(1), pp.224-231.
Thomas P, Smart TG. HEK293 cell line: a vehicle for the expression of recombinant proteins. Journal of pharmacological and toxicological methods. 2005 May 1;51(3):187-200.
Dhiman, H.K., Ray, A.R. and Panda, A.K. Three-dimensional chitosan scaffold-based MCF-7 cell culture for the determination of the cytotoxicity of tamoxifen. Biomaterials 2005; 26(9), pp.979-986.
Mohammadain, Shahrbabaki F., M. Mahmoudi, M. Mirzaee, A. Khoshdel, M. Sheikhfathollahi, N. Zinodini, Mr Hajizadeh. "Expression of some genes involved in epigenetic in breast cancer cell lines: The effect of quercetin."2015; 413-424.
Adan A, Kiraz Y, Baran Y. Cell proliferation and cytotoxicity assays. Current pharmaceutical biotechnology. 2016 Nov 1;17(14):1213-21.
Zohreh, F., Nasri, S. and Karishchi, P. The effect of Quercetin on pituitary–gonadal axis, sperm parameters and testis tissue in
male rats. Journal of Sabzevar University of Medical Sciences 2017; 22(2), pp.377-386.
Baghel SS, Shrivastava N, Baghel RS, Agrawal P, Rajput S. A review of quercetin: antioxidant and anticancer properties. World J Pharm Pharmaceutical Sci. 2012 May 1;1(1):146-60.
Jeong, J.H., An, J.Y., Kwon, Y.T., Rhee, J.G. and Lee, Y.J. Effects of low dose quercetin: Cancer cell‐specific inhibition of cell cycle progression. Journal of cellular biochemistry 2009;106(1), pp.73-82.
Saaby, L., Rasmussen, H.B. and Jäger, A.K. MAO-A inhibitory activity of quercetin from Calluna vulgaris (L.) Hull. Journal of Ethnopharmacology 2009; 121(1), pp.178-181.
van Erk, M.J., Roepman, P., van der Lende, T.R., Stierum, R.H., Aarts, J.M.M.J.G., van Bladeren, P.J. and van Ommen, B. Integrated assessment by multiple gene expression analysis of quercetin bioactivity on anticancer–related mechanisms in colon cancer cells in vitro. European journal of nutrition, 2005; 44(3), pp.143-156.
Nair, M.P., Mahajan, S., Reynolds, J.L., Aalinkeel, R., Nair, H., Schwartz, S.A. and Kandaswami, C. The flavonoid quercetin inhibits proinflammatory cytokine (tumor necrosis factor alpha) gene expression in normal peripheral blood mononuclear cells via modulation of the NF-κβ system. Clinical and vaccine immunology 2006; 13(3), pp.319-328.
Xiang, T.X., Tao, X.H., Jiang, Z. and Wang, P.L. Effects of quercetin on proliferation of gastric cancer lines BGC823 and the expression of p53, Bcl-2/Bax and PCNA. Laser J, 2006; 27, pp.95-96.
Mouria, M., Gukovskaya, A.S., Jung, Y., Buechler, P., Hines, O.J., Reber, H.A. and Pandol, S.J. Food‐derived polyphenols inhibit pancreatic cancer growth through mitochondrial cytochrome C release and apoptosis. International Journal of Cancer 2002; 98(5), pp.761-769.
Shan, B.E., Wang, M.X. and Li, R.Q. Quercetin inhibits human SW480 colon cancer growth in association with inhibition of cyclin D1 and survivin expression through Wnt/β-catenin signaling pathway. Cancer investigation, 27(6) 2009; pp.604-612.
Lee, Y.K., Hwang, J.T., Kwon, D.Y., Surh, Y.J. and Park, O.J. Induction of apoptosis by quercetin is mediated through AMPKα1/ASK1/p38 pathway. Cancer letters 2010; 292(2) pp.228-236.
Gupta, K. and Panda, D. Perturbation of microtubule polymerization by quercetin through tubulin binding: a novel mechanism of its antiproliferative activity. Biochemistry 2002; 41(43), pp.13029-13038.
Kim, J.Y., Kim, E.H., Park, S.S., Lim, J.H., Kwon, T.K. and Choi, K.S. Quercetin sensitizes human hepatoma cells to TRAIL‐induced apoptosis via Sp1‐mediated DR5 up‐regulation and proteasome‐mediated c‐FLIPS down‐ Journal of cellular biochemistry 2008; 105(6), pp.1386-1398.
_||_
Mousavi, S.M., Gouya, M.M., Ramazani, R., Davanlou, M., Hajsadeghi, N. and Seddighi, Z. Cancer incidence and mortality in Iran. Annals of oncology 2009; 20(3), pp.556-563.
Harirchi, I., Karbakhsh, M., Kashefi, A. and Momtahen, A.J. Breast cancer in Iran: results of a multi-center study. Asian pacific journal of cancer prevention 2004; 5(1), pp.24-27.
Taplin, S.H., Ichikawa, L., Yood, M.U., Manos, M.M., Geiger, A.M., Weinmann, S., Gilbert, J., Mouchawar, J., Leyden, W.A., Altaras, R. and Beverly, R.K. Reason for late-stage breast cancer: absence of screening or detection, or breakdown in follow-up? Journal of the National Cancer Institute 2004; 96(20), pp.1518-1527.
Wilken, R., Veena, M.S., Wang, M.B. and Srivatsan, E.S. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Molecular cancer 2011; 10(1), pp.1-19.
Verkooijen, H.M., Fioretta, G., Pache, J.C., Franceschi, S., Raymond, L., Schubert, H. and Bouchardy, C. Diagnostic changes as a reason for the increase in papillary thyroid cancer incidence in Geneva, Switzerland. Cancer Causes & Control 2003; 14(1), pp.13-17.
Jenab, M., Bueno-de-Mesquita, H.B., Ferrari, P., van Duijnhoven, F.J., Norat, T., Pischon, T., Jansen, E.H., Slimani, N., Byrnes, G., Rinaldi, S. and Tjønneland, A. Association between pre-diagnostic circulating vitamin D concentration and risk of colorectal cancer in European populations: a nested case-control study. Bmj 2010; 340.
Pelicano, H., Carney, D. and Huang, P. ROS stress in cancer cells and therapeutic implications. Drug resistance updates 2004; 7(2), pp.97-110.
Hsieh, T.C., Wijeratne, E.K., Liang, J.Y., Gunatilaka, A.L. and Wu, J.M. Differential control of growth, cell cycle progression, and expression of NF-κB in human breast cancer cells MCF-7, MCF-10A, and MDA-MB-231 by ponicidin and oridonin, diterpenoids from the chinese herb Rabdosia rubescens. Biochemical and biophysical research communications 2005; 337(1), pp.224-231.
Thomas P, Smart TG. HEK293 cell line: a vehicle for the expression of recombinant proteins. Journal of pharmacological and toxicological methods. 2005 May 1;51(3):187-200.
Dhiman, H.K., Ray, A.R. and Panda, A.K. Three-dimensional chitosan scaffold-based MCF-7 cell culture for the determination of the cytotoxicity of tamoxifen. Biomaterials 2005; 26(9), pp.979-986.
Mohammadain, Shahrbabaki F., M. Mahmoudi, M. Mirzaee, A. Khoshdel, M. Sheikhfathollahi, N. Zinodini, Mr Hajizadeh. "Expression of some genes involved in epigenetic in breast cancer cell lines: The effect of quercetin."2015; 413-424.
Adan A, Kiraz Y, Baran Y. Cell proliferation and cytotoxicity assays. Current pharmaceutical biotechnology. 2016 Nov 1;17(14):1213-21.
Zohreh, F., Nasri, S. and Karishchi, P. The effect of Quercetin on pituitary–gonadal axis, sperm parameters and testis tissue in
male rats. Journal of Sabzevar University of Medical Sciences 2017; 22(2), pp.377-386.
Baghel SS, Shrivastava N, Baghel RS, Agrawal P, Rajput S. A review of quercetin: antioxidant and anticancer properties. World J Pharm Pharmaceutical Sci. 2012 May 1;1(1):146-60.
Jeong, J.H., An, J.Y., Kwon, Y.T., Rhee, J.G. and Lee, Y.J. Effects of low dose quercetin: Cancer cell‐specific inhibition of cell cycle progression. Journal of cellular biochemistry 2009;106(1), pp.73-82.
Saaby, L., Rasmussen, H.B. and Jäger, A.K. MAO-A inhibitory activity of quercetin from Calluna vulgaris (L.) Hull. Journal of Ethnopharmacology 2009; 121(1), pp.178-181.
van Erk, M.J., Roepman, P., van der Lende, T.R., Stierum, R.H., Aarts, J.M.M.J.G., van Bladeren, P.J. and van Ommen, B. Integrated assessment by multiple gene expression analysis of quercetin bioactivity on anticancer–related mechanisms in colon cancer cells in vitro. European journal of nutrition, 2005; 44(3), pp.143-156.
Nair, M.P., Mahajan, S., Reynolds, J.L., Aalinkeel, R., Nair, H., Schwartz, S.A. and Kandaswami, C. The flavonoid quercetin inhibits proinflammatory cytokine (tumor necrosis factor alpha) gene expression in normal peripheral blood mononuclear cells via modulation of the NF-κβ system. Clinical and vaccine immunology 2006; 13(3), pp.319-328.
Xiang, T.X., Tao, X.H., Jiang, Z. and Wang, P.L. Effects of quercetin on proliferation of gastric cancer lines BGC823 and the expression of p53, Bcl-2/Bax and PCNA. Laser J, 2006; 27, pp.95-96.
Mouria, M., Gukovskaya, A.S., Jung, Y., Buechler, P., Hines, O.J., Reber, H.A. and Pandol, S.J. Food‐derived polyphenols inhibit pancreatic cancer growth through mitochondrial cytochrome C release and apoptosis. International Journal of Cancer 2002; 98(5), pp.761-769.
Shan, B.E., Wang, M.X. and Li, R.Q. Quercetin inhibits human SW480 colon cancer growth in association with inhibition of cyclin D1 and survivin expression through Wnt/β-catenin signaling pathway. Cancer investigation, 27(6) 2009; pp.604-612.
Lee, Y.K., Hwang, J.T., Kwon, D.Y., Surh, Y.J. and Park, O.J. Induction of apoptosis by quercetin is mediated through AMPKα1/ASK1/p38 pathway. Cancer letters 2010; 292(2) pp.228-236.
Gupta, K. and Panda, D. Perturbation of microtubule polymerization by quercetin through tubulin binding: a novel mechanism of its antiproliferative activity. Biochemistry 2002; 41(43), pp.13029-13038.
Kim, J.Y., Kim, E.H., Park, S.S., Lim, J.H., Kwon, T.K. and Choi, K.S. Quercetin sensitizes human hepatoma cells to TRAIL‐induced apoptosis via Sp1‐mediated DR5 up‐regulation and proteasome‐mediated c‐FLIPS down‐ Journal of cellular biochemistry 2008; 105(6), pp.1386-1398.