مروری بر روش فتودینامیک تراپی با رویکرد حسگر های نوری مختلف
محورهای موضوعی :
زیست شناسی سلولی تکوینی گیاهی و جانوری ، تکوین و تمایز ، زیست شناسی میکروارگانیسم
پرنیا همتی
1
,
سید مهدی طبایی
2
,
مینا سادات نادری
3
*
1 - گروه زیست شناسی ، دانشکده علوم زیستی، دانشگاه آزاد اسلامی واحد تهران شمال، تهران
2 - گروه پژوهشی لیزر پزشکی، مرکز تحقیقات لیزر در پزشــکی، پژوهشــکده یارا، سازمان جهاد دانشگاهی علوم پزشکی تهران،
3 - گروه بیوفیزیک، دانشکده علوم زیستی، دانشگاه آزاد اسلامی واحد تهران شمال، تهران، ایران
تاریخ دریافت : 1401/09/27
تاریخ پذیرش : 1401/11/06
تاریخ انتشار : 1402/09/01
کلید واژه:
سرطان,
پوست,
فتودینایک تراپی,
حسگر های نوری,
لیزر کم توان,
چکیده مقاله :
فتودینامیک تراپی یک روش درمانی برای بیماری هایی مانند سرطان با حداقل تهاجم است. حساس کننده نور ، که به عنوان یک کاتالیزور در هنگام جذب نور عمل می کند، اکسیژن را به گونه های اکسیژن فعال سیتوتوکسیک تبدیل می کند که سلول های بدخیم را از طریق آپوپتوز ویا نکروز از بین می برد، عروق تومور را تخریب می کند و ایمنی را تحریک می کند. هدف از این مطالعه معرفی و بررسی عملکرد انواع حساسگر های نوری در درمان بیماری های مختلف از جمله بیماری های پوستی و سرطان پوست با روش فتودینامیک تراپی است . در این مطالعه ی مروری مقالات 10 سال اخیر در سایت هایgoogle scholar, PubMed, science direct, and Scopus, با عناوین حسگر های نوری ، فتودینامیک تراپی ، سرطان ، پوست و لیزر کم توان بررسی گردید. روش های درمانی مختلفی برای سرطان وجود دارد که روش درمانی فتودینامیکی یک روش درمانی امیدوار کننده برای انواع سرطان ها است . از مزایای این روش استفاده از تشعشعات غیر یونیزه کننده است که منجر به حداقل اسیب به DNA و بافت های اطراف می شود ، بنابراین این روش می تواند با توجه به بافت مورد نظر از حسگر های نوری مختلف با طول موج های نوری مختلف در بهبود روش های درمانی با مکانیسم منحصر به فرد خود اثر کمک کننده داشته باشد ..
چکیده انگلیسی:
Photodynamic therapy is a minimally invasive treatment for diseases such as cancer. The photosensitizer, which acts as a catalyst upon absorption of light, converts oxygen into cytotoxic reactive oxygen species that destroy malignant cells through apoptosis or necrosis, destroy tumor vasculature, and Stimulate immunity. An active photosensitizer activated by a specific biomarker is able to distinguish healthy from diseased cells, thereby reducing off-target photodamage. The purpose of this study is to introduce and evaluate the performance of different types of photosensitizers in the treatment of various diseases, including skin diseases and skin cancer with the photodynamic therapy method. In this review study, the articles of the last 10 years on the sites google scholar, PubMed, science direct, and Scopus, with the titles of photosensitizers, photodynamic therapy, cancer, skin, and low-power laser were reviewed. There are different treatment methods for cancer, and photodynamic therapy is a promising treatment method for all types of cancer. One of the advantages of this method is the use of non-ionizing radiation, which leads to minimal damage to DNA and surrounding tissues, so this method can improve the method by using different photosensitizers with different optical wavelengths according to the target tissue. treatments with their unique mechanism to have a helpful effect.
منابع و مأخذ:
Ralf Paus L, Klein J, Permana PA, Owecki M, Chaldakov GN, Böhm M, et al. What are subcutaneous adipocytes really good for...? Exp Dermatol. 2007; 16(1): 45–47. 10.1111/j.1600-0625.2006.00519_1
Booth A, Magnuson A, Foster M. Detrimental and protective fat: body fat distribution and its relation to metabolic disease. Horm Mol Biol Clin Investig. 2014;17(1): 13–27. 10.1515/hmbci-2014-0009
Rivera-Gonzalez G, Shook B, Horsley V. Adipocytes in skin health and disease. Cold Spring Harb Perspect Med. 2014;4(3): 1–18
Singh A, Morris RJ. Innate immunity and the regulation and mobilization of keratinocyte stem cells: are the old players playing a new game? Exp Dermatol. 2012;21(9):660–664. doi: 10.1111/j.1600-0625.2012.01566.x
Kanitakis J. Anatomy, histology and immunohistochemistry of normal human skin. Eur J Dermatol. 2002;12(4):390–3
Lomas A, Leonardi-Bee J, Bath-Hextall F. A systematic review of worldwide incidence of nonmelanoma skin cancer. Br J Dermatol. 2012;166(5):1069–1080. doi: 10.1111/j.1365-2133.2012.10830.x.
Bouwstra JA, Pilgram GSK, Ponex M. Structure of the skin barrier. In: Elias PM, Feingold KR, editors. Skin Barrier. Taylor & Francis; New York: 2006. pp. 65–96.
Rogers HW, Weinstock MA, Feldman SR, Coldiron BM. Incidence Estimate of Nonmelanoma Skin Cancer (Keratinocyte Carcinomas) in the U.S. Population, 2012. JAMA Dermatol. 2015;151(10):1081–1086. doi: 10.1001/jamadermatol.2015.1187.
Cohen PR , Quiñones MT, Uebelhoer NS. Red Dot Basal Cell Carcinoma: Literature Review of a Unique Clinical Subtype of Basal Cell Carcinoma. Published online 2021 Feb 15.
Kasprzak JM, Xu YG. Diagnosis and management of lentigo maligna: a review. Drugs in Context 2015;4:212281.
Kyrgidis A, Tzellos TG , Triaridis S. Melanoma: Stem cells, sun exposure and hallmarks for carcinogenesis, molecular concepts and future clinical implications, J Carcinog. 2010; 9: 3
Griffin LL, Ali FR, Lear JT. Non‐melanoma skin cancer. Clinical Medicine 2016; 16(1): 62‐
WE Damsky and M Bosenberg. Melanocytic nevi and melanoma: unraveling a complex relationship Author manuscript; available in PMC 2018 May 2.
Madan V, Lear JT, Szeimies RM. Non‐melanoma skin cancer. Lancet 2010; 375(9715): 673‐
Lansbury L, Leonardi‐Bee J, Perkins W, Goodacre T, Tweed JA, Bath‐Hextall FJ. Interventions for non‐metastatic squamous cell carcinoma of the skin. Cochrane Database of Systematic Reviews 2010, Issue 4.
Motley RJ, Preston PW, Lawrence CM. Multi‐professional guidelines for the management of the patient with primary cutaneous squamous cell carcinoma. www.bsds.org.uk/uploads/pdfs/SCCguide2009.pdf (accessed 15 November 2017).
Hoorens I, Vossaert K, Pil L, Boone B, Schepper S, Ongenae K, et al. Total‐body examination vs lesion‐directed skin cancer screening. JAMA Dermatology 2016; 152(1): 27‐
Tan KB, Tan SH, Jaffar H, Simulators of Squamous Cell Carcinoma of the Skin: Diagnostic Challenges on Small Biopsies and Clinicopathological Correlation. Published online 2013 Jun 25.
Verkouteren JAC, Ramdas KHR, Wakkee M, Nijsten T. Epidemiology of basal cell carcinoma: scholarly review. British Journalof Dermatology. 2017; 177(2): 359‐
George S. W and R Jackson. Treatment of Squamous Cell Carcinoma of the Skin by Electrodesiccation and Curettage, Can Med Assoc J.1964Feb8;90(6): 408–413
Fania L, Didona D, Di Pietro FR , Verkhovskaia S, Morese R, Cutaneous Squamous Cell Carcinoma: From Pathophysiology to Novel Therapeutic Approaches. Biomedicines. 2021 Feb; 9(2): 171.
Foley P., Shumack S., Goh M., Cryotherapy and electrodessication and curettage , 25 November 2019 .
Soleymani T, Abrouk M, Kelly MK, An Analysis of Laser Therapy for the Treatment of Nonmelanoma Skin Cancer, Dermatol Surg. 2017 May.
AlamM,ArmstrongA,BordeauxKJ,BaumC,Guidelinesofcareforthemanagementofcutaneous squamous cell carcinoma Published online 2018 Jan 10.
Shi J, Xiao Z, Kamaly N, Farokhzad OC. Self- assembled targeted nanoparticles: Evolution of technologiesandbenchtobedsidetranslation.AccChemRes.2011;44:1123–1134.
Remant Bahadur K.C, Gold nanoparticle-based gene delivery: promises and challenges, Nanotechnol Rev 2014; 3(3): 269–280.
Rita Mendes , Gold Nanoparticle Approach to the Selective Delivery of Gene Silencing in Cancer— The CaseforCombinedDelivery?,Genes2017, 94.
Chang R, Hsu CF,-Bor author T. Fabrication of Chlorophyll-Incorporated Nanogels for Potential Applications in Photothermal Cancer Therapy. ACS Omega. 2018 Nov 30; 3(11): 16057–16062.Published online 2018 Nov 27
Cruz, L.J., Tacken, P.J., Rueda, F., Domingo, J.C., Albericio, F., Figdor, C.G.,. Targeting nanoparticles to dendriticcellsforimmunotherapy.Method.Enzymol.2012: 509, 143–16330.
Gunaydin G , Gedik ME., Ayan S. Photodynamic Therapy for the Treatment and Diagnosis of Cancer–AReviewoftheCurrentClinicalStatus.FrontChem. 2021; 9: 686303
Agostinis, P., Berg, K., Cengel, K. A., Foster, T. H., Girotti, A. W., Gollnick, S. O., et al. (2011). Photodynamic Therapy of Cancer: an Update. CA: AC ancer J.
Raab, O. Uber die Wirkung fluoreszierender Stoffe auf Infusorien. Zeitung Biol. 39, 524–526 (1900).
Prime, J. Les accidents toxiques par l'eosinate de sodium (Jouve and Boyer, Paris, 1900).
von Tappeiner, H. & Jodlbauer, A. Die sensiblilisierende Wirkung fluoreszierender Substanzer Gesammte Untersuchungen uber die photodynamische Erscheinerung (Voger, F. C., Leipzig, 1907).
Castano AP, Mroz P, and Hamblin MR. Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer. Author manuscript; available in PMC 2010 Sep
Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J. Photodynamic therapy of cancer: an update. CA Cancer J Clin. 2011 Jul-Aug;61(4):250-81. doi: 10.3322/caac.20114. Epub 2011 May 26. PMID: 21617154; PMCID: PMC3209659.
Dougherty TJ, Gomer CJ, Henderson BW, et al. Photodynamic therapy. J Natl Cancer Inst. 1998;90:889–905.
38_ Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003;3:380–387
Gunaydin G., Gedik ME., Ayan S. Photodynamic Therapy for the Treatment and Diagnosis of Cancer–Are view of the Current Clinical Status. Front Chem. 2021; 9: 6
Shik Kim H ,and Lee DY. Nanomedicine in Clinical Photodynamic Therapy for the Treatment of Brain Tumors. Biomedicines 2022, 10, 96.
Wan MT, and Y Lin J. Current evidence and applications of photodynamic therapy in dermatology. Published online 2014 May 21. doi: 10.2147/CCID.S35334.
Kou J,Dou D, and Yang L , Porphyrin photosensitizers in photodynamic therapy and its applications. 2017 Oct 6; 8(46): 81591–81603. Published online 2017 Aug 11. doi: 10.18632/oncotarget.20189
Castano AP, Demidova TN ,and. Hamblin MR, Mechanisms in photodynamic therapy: Part three—Photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction. Author manuscript; available in PMC 2014 Jul 23.
Ostańskaa E., Dorota D, Aebisherc B. The potential of photodynamic therapy in current breast cancer treatment methodologies. Received 10 June 2020, Revised 12 January 2021, Accepted 18 January 2021, Available online 28 January 2021, Version of Record 28 January 2021.
Cramers, P. et al. Foscan uptake and tissue distribution in relation to photodynamic efficacy. Br. J. Cancer 88, 283–290 (2003).
Pogue, B. W. et al. Photodynamic therapy with verteporfin in the radiation-induced fibrosarcoma-1 tumor causes enhanced radiation sensitivity. Cancer Res. 63, 1025–1033 (2003).
Ruoslahti, E. Specialization of tumour vasculature. Nature Rev. Cancer 2, 83–90 (2002).
McBride, G. Studies expand potential uses of photodynamic therapy. JNCI Cancer Spectrum 94, 1740–1742 (2002).
Duska, L. R., Hamblin, M. R., Miller, J. L. & Hasan, T. Combination photoimmunotherapy and cisplatin: effects on human ovarian cancer ex vivo. JNCI Cancer Spectrum 91, 1557–1563 (1999).
Nath S., Saad MA., Pigula M., Photoimmunotherapy of Ovarian Cancer: A Unique Niche in the Management of Advanced Disease. Cancers 2019, 11(12).
Hopper C. Photodynamic therapy: a clinical reality in the treatment of cancer. Lancet Oncol 2000. 19–212: 1.
Alexander C. Ku ̈ Photodynamic therapy, Medical Laser Application 2005; 20: 37–45
Plekhova N., Shevchenko O., Korshunova O, Development of Novel Tetrapyrrole Structure Photosensitizers for Cancer Photodynamic Therapy , 2022 Feb; 9(2): 82.Published online 2022 Feb 19. doi: 10.3390/bioengineering9020082
Khani T., Jadidi M., Hasanzadeh H,Moshfegh SH. Hematoporphyrin Is a Promising Sensitizer for Dual-Frequency Sono-photodynamic Therapy in Mice Breast Cancer. March 14, 2022.
Lin C, Zhang Y, Zhao Q, Sun P, Gao Z, Cui S. Analysis of the short-term effect of photodynamic therapy on primary bronchial lung cancer. Lasers Med Sci. 2021 Jun;36(4):753-761. doi: 10.1007/s10103-020-03080-5. Epub 2020 Jun 27. PMID: 32594348; PMCID: PMC8121718.
Nwogu C., Kloc A., Attwood K, Bshara W, Durrani F, Pandey R. Porfimer Sodium Versus PS785 for Photodynamic Therapy (PDT) of Lung Cancer Xenografts in Mice. J Surg Res. 2021 Jul;263:245-250. doi: 10.1016/j.jss.2020.12.067. Epub 2021 Mar 11. PMID: 33713956.
Liu H, Liu Y, Wang L, Ruan X, Wang F, Xu D, Zhang J, Jia X, Liu D. Evaluation on Short-Term Therapeutic Effect of 2 Porphyrin Photosensitizer-Mediated Photodynamic Therapy for Esophageal Cancer. Technol Cancer Res Treat. 2019 Jan 1;18:1533033819831989. doi: 10.1177/1533033819831989. PMID: 30885065; PMCID: PMC6425523.
Malina L, Tomankova KB, Malohlava J, Jiravova J, Manisova B, Zapletalova J, Kolarova H. The in vitro cytotoxicity of metal-complexes of porphyrin sensitizer intended for photodynamic therapy. Toxicol In Vitro. 2016 Aug;34:246-256. doi: 10.1016/j.tiv.2016.04.010. Epub 2016 Apr 20. PMID: 27107484.
Orenstein A, Kostenich G, Roitman L, Shechtman Y, Kopolovic Y, Ehrenberg B, Malik Z. A comparative study of tissue distribution and photodynamic therapy selectivity of chlorin e6, Photofrin II and ALA-induced protoporphyrin IX in a colon carcinoma model. Br J Cancer. 1996 Apr;73(8):937-44. doi: 10.1038/bjc.1996.185. PMID: 8611429; PMCID: PMC2075833.
Berger Y, Greppi A, Siri O, Neier R, Juillerat-Jeanneret L. Ethylene glycol and amino acid derivatives of 5-aminolevulinic acid as new photosensitizing precursors of protoporphyrin IX in cells. J Med Chem. 2000 Dec 14; 43(25): 4738-46. doi: 10.1021/jm000981q. PMID: 11123982.
Cohen DK, Lee PK. Photodynamic Therapy for Non-Melanoma Skin Cancers. Cancers (Basel). 2016 Oct 4;8(10):90. doi: 10.3390/cancers8100090. PMID: 27782043; PMCID: PMC5082380.
Horlings RK, Terra JB, Witjes MJ. mTHPC mediated, systemic photodynamic therapy (PDT) for nonmelanoma skin cancers: Case and literature review. Lasers Surg Med. 2015 Dec;47(10):779-87. doi: 10.1002/lsm.22429. Epub 2015 Oct 14. PMID: 26462858.
Nistorescu S, Udrea AM, Badea MA, Lungu I, Boni M, Tozar T, Dumitrache F, Maraloiu VA, Popescu RG, Fleaca C, Andronescu E, Dinischiotu A, Staicu A, Balas M. Low Blue Dose Photodynamic Therapy with Porphyrin-Iron Oxide Nanoparticles Complexes: In Vitro Study on Human Melanoma Cells. Pharmaceutics. 2021 Dec 10;13(12):2130. doi: 10.3390/pharmaceutics13122130. PMID: 34959411; PMCID: PMC8705854.
Dos Santos AF, de Almeida DRQ, Terra LF, Wailemann RAM, Gomes VM, Arini GS, Ravagnani FG, Baptista MS, Labriola L. Fluence Rate Determines PDT Efficiency in Breast Cancer Cells Displaying Different GSH Levels. Photochem Photobiol. 2020 May;96(3):658-667. doi: 10.1111/php.13182. Epub 2019 Dec 17. PMID: 31742700.
Huang L, Lin H, Chen Q, Yu L, Bai D. MPPa-PDT suppresses breast tumor migration/invasion by inhibiting Akt-NF-κB-dependent MMP-9 expression via ROS. BMC Cancer. 2019 Nov 29;19(1):1159. doi: 10.1186/s12885-019-6374-x. PMID: 31783821; PMCID: PMC6884812.
Wyss P, Schwarz V, Dobler-Girdziunaite D, Hornung R, Walt H, Degen A, Fehr M. Photodynamic therapy of locoregional breast cancer recurrences using a chlorin-type photosensitizer. Int J Cancer. 2001 Sep 1;93(5):720-4. doi: 10.1002/ijc.1400. PMID: 11477585.
Demartis S, Rassu G, Murgia S, Casula L, Giunchedi P, Gavini E. Improving Dermal Delivery of Rose Bengal by Deformable Lipid Nanovesicles for Topical Treatment of Melanoma. Mol Pharm. 2021 Nov 1;18(11):4046-4057. doi: 10.1021/acs.molpharmaceut.1c00468. Epub 2021 Sep 23. PMID: 34554752; PMCID: PMC8564756.
Borodziuk A, Kowalik P, Duda M, Wojciechowski T, Minikayev R, Kalinowska D, Klepka M, Sobczak K, Kłopotowski Ł, Sikora B. Unmodified Rose Bengal photosensitizer conjugated with NaYF4:Yb,Er upconverting nanoparticles for efficient photodynamic therapy. Nanotechnology. 2020 Nov 13; 31(46): 465101. doi: 10.1088/1361-6528/aba975. PMID: 32717731.
Ramirez R, Mazzocco T,S Rose bengal as a photosensitizer in the photodynamic therapy of breast cancer cell lines ,Proceedings of the SPIE, Volume 11070, id. 11070A1 4 pp. (2019).Pub Date:August 2019 10.1117/12.2525456 , 2019SPIE11070E..A1A
Dhillon SK, Porter SL, Rizk N, Sheng Y, McKaig T, Burnett K, White B, Nesbitt H, Matin RN, McHale AP, Callan B, Callan JF. Rose Bengal-Amphiphilic Peptide Conjugate for Enhanced Photodynamic Therapy of Malignant Melanoma. J Med Chem. 2020 Feb 13;63(3):1328-1336. doi: 10.1021/acs.jmedchem.9b01802. Epub 2020 Jan 27. PMID: 31940202.
Newman DJ, Cragg GM. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J Nat Prod. 2020 Mar 27;83(3):770-803. doi: 10.1021/acs.jnatprod.9b01285. Epub 2020 Mar 12. PMID: 32162523.
Saide A, Lauritano C, Ianora A. Pheophorbide a: State of the Art. Mar Drugs. 2020 May 14;18(5):257. doi: 10.3390/md18050257. PMID: 32423035; PMCID: PMC7281735.
Tang P.M., Chan J.Y., Au S.W., Kong S.K., Tsui S.K., Waye M.M., Mak T.C., Fong W.P., Fung K.P. Pheophorbide a an active compound isolated from Scutellaria barbata, possesses photodynamic activities by inducing apoptosis in human hepatocellular carcinoma. Cancer Biol. Ther. 2006;5:1111–1116. doi: 10.4161/cbt.5.9.2950.
Tang P.M., Liu X.Z., Zhang D.M., Fong W.P., Fung K.P. Pheophorbide a based photodynamic therapy induces apoptosis via mitochondrial-mediated pathway in human uterine carcinosarcoma. Cancer Biol. Ther. 2009;8:533–539. doi: 10.4161/cbt.8.6.7694.
Bergstrom L.C., Vucenik I., Hagen I.K., Chernomorsky S.A., Poretz R.D. In-vitro photocytotoxicity of lysosomotropic immunoliposomes containing pheophorbide a with human bladder carcinoma cells. J. Photochem. Photobiol. B. 1994;24:17–23. doi: 10.1016/1011-1344(94)07008-3.
Chung P.S., He P., Shin J.I., Hwang H.J., Lee S.J., Ahn J.C. Photodynamic therapy with 9-hydroxypheophorbide alpha on AMC-HN-3 human head and neck cancer cells: Induction of apoptosis via photoactivation of mitochondria and endoplasmic reticulum. Cancer Biol. Ther. 2009;8:1343–1351. doi: 10.4161/cbt.8.14.8693.
Qumseya B.J., David W., Wolfsen H.C. Photodynamic therapy for barrett’s esophagus and esophageal carcinoma. Clin. Endosc. 2013;46:30–37. doi: 10.5946/ce.2013.46.1.30.
Lee W.Y., Lim D.S., Ko S.H., Park Y.J., Ryu K.S., Ahn M.Y., Kim Y.R., Lee D.W., Cho C.W. Photoactivation of pheophorbide a induces a mitochondrial-mediated apoptosis in Jurkat leukaemia cells. J. Photochem. Photobiol. B. 2004;75:119–126. doi: 10.1016/j.jphotobiol.2004.05.005.
Della Pietra E., Simonella F., Bonavida B., Xodo L.E., Rapozzi V. Repeated sub-optimal photodynamic treatments with pheophorbide a induce an epithelial mesenchymal transition in prostate cancer cells via nitric oxide. Nitric Oxide. 2015;45:43–53. doi: 10.1016/j.niox.2015.02.005
Gheewala T., Skwor T., Munirathinam G. Photodynamic therapy using pheophorbide and 670 nm LEDs exhibits anti-cancer effects in-vitro in androgen dependent prostate cancer. Photodiagn. Photodyn. Ther. 2018;21:130–137. doi: 10.1016/j.pdpdt.2017.10.026.
Wu D., Liu Z., Fu Y., Zhang Y., Tang N., Wang Q., Tao L. Efficacy of 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a in photodynamic therapy of human esophageal squamous cancer cells. Oncol. Lett. 2013;6:1111–1119. doi: 10.3892/ol.2013.1493.
Ghosh S, Banerjee S, Sil PC. The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: A recent update. Food Chem Toxicol. 2015 Sep;83:111-24. doi: 10.1016/j.fct.2015.05.022. Epub 2015 Jun 9. PMID: 26066364.
Dujic J, Kippenberger S, Ramirez-Bosca A, Diaz-Alperi J, Bereiter-Hahn J, Kaufmann R, Bernd A, Hofmann M. Curcumin in combination with visible light inhibits tumor growth in a xenograft tumor model. Int J Cancer. 2009 Mar 15;124(6):1422-8. doi: 10.1002/ijc.23997. PMID: 19035461.
Xin, Y.; Huang, Q.; Zhang, P.; Guo, W.W.; Zhang, L.Z.; Jiang, G. Demethoxycurcumin in combination with ultraviolet radiation B induces apoptosis through the mitochondrial pathway and caspase activation in A431 and HaCaT cells. Tumour Biol. 2017, 39,1010428317706216.
Abdel Fadeel, D.A.; Kamel, R.; Fadel, M. PEGylated lipid nanocarrier for enhancing photodynamic therapy of skin carcinoma using curcumin: In-vitro/in-vivo studies and histopathological examination. Sci. Rep. 2020, 10, 10435.
Kamel, A.E.; Fadel, M.; Louis, D. Curcumin-loaded nanostructured lipid carriers prepared using Peceol™ and olive oil in photodynamic therapy: Development and application in breast cancer cell line. Int. J. Nanomed. 2019, 14, 5073–5085.
Raschpichler, M.; Preis, E.; Pinnapireddy, S.R.; Baghdan, E.; Pourasghar, M.; Schneider, M.; Bakowsky, U. Photodynamic inactivation of circulating tumor cells: An innovative approach against metastatic cancer. Eur. J. Pharm. Biopharm. 2020, 157,38–46.
Halevas, E.; Arvanitidou, M.; Mavroidi, B.; Hatzidimitriou, A.G.; Politopoulos, K.; Alexandratou, E.; Pelecanou, M.; Sagnou, M. A novel curcumin gallium complex as photosensitizer in photodynamic therapy: Synthesis, structural and physicochemical characterization, photophysical properties and in vitro studies against breast cancer cells. J. Mol. Struct. 2021, 1240, 130485
Mohammadi, S.; Soratijahromi, E.; Dehdari Vais, R.; Sattarahmady, N. Phototherapy and Sonotherapy of Melanoma Cancer Cells. Using Nanoparticles of Selenium-Polyethylene Glycol-Curcumin as a Dual-Mode Sensitizer. J. Biomed. Phys. Eng. 2020, 10, 597–606.
Wo´zniak, M.; Nowak, M.; Lazebna, A.; Wi˛ecek, K.; Jabło ´ nska, I.; Szpadel, K.; Grzeszczak, A.; Gubernator, J.; Ziółkowski, P.The Comparison of In Vitro Photosensitizing Efficacy of Curcumin-Loaded Liposomes Following Photodynamic Therapy on Melanoma MUG-Mel2, Squamous Cell Carcinoma SCC-25, and Normal Keratinocyte HaCaT Cells. Pharmaceuticals 2021, 14, 374.
Comini LR, Fernandez IM, Rumie Vittar NB, Núñez Montoya SC, Cabrera JL, Rivarola VA. Photodynamic activity of anthraquinones isolated from Heterophyllaea pustulata Hook f. (Rubiaceae) on MCF-7c3 breast cancer cells. Phytomedicine. 2011 Sep 15;18(12):1093-5. doi: 10.1016/j.phymed.2011.05.008. Epub 2011 Jun 12. PMID: 21665453.
Kubrak TP, Kołodziej P, Sawicki J, Mazur A, Koziorowska K, Aebisher D. Some Natural Photosensitizers and Their Medicinal Properties for Use in Photodynamic Therapy. Molecules. 2022 Feb 10;27(4):1192. doi: 10.3390/molecules27041192. PMID: 35208984; PMCID: PMC8879555.
Marles, R.J.; Compadre, R.L.; Compadre, C.M.; Soucy-Breau, C.; Redmond, R.W.; Duval, F.; Mehta, B.; Morand, P.; Scaiano, J.C.; Arnason, J.T. Thiophenes as mosquito larvicides: Structure-toxicity relationship analysis. Pestic. Biochem. Physiol. 1991, 41, 89–100.
Zhang, P.; Jin, W.-R.; Shi, Q.; He, H.; Ma, Z.; Qu, H.-B. Two novel thiophenes from Echinops grijissi Hance. J. Asian Nat. Prod. Res.2008, 10, 977–981
Naithani, R.; Mehta, R.G.; Shukla, D.; Chandersekera, S.N.; Moriarty, R.M. Antiviral Activity of Phytochemi-cals: A Current Perspective. Diet. Compon. Immune Funct. 2010, 421–468.
Gomaa, I.; Ali, S.E.; El-Tayeb, T.A.; Abdel-Kader, M.H. Chlorophyll derivative mediated PDT versus methotrexate: An in vitro study using MCF-7 cells. Photodiagn. Photodyn. Ther. 2012, 9, 362–368.
Ichimaru, Y.; Kanaeda, N.; Tominaga, S.; Suzui, M.; Maeda, T.; Fujii, H.; Nakao, M.; Yoshioka, H. Sasa veitchii extract induces anticancer effects via inhibition of cyclin D1 expression in MCF-7 cells. Nagoya J. Med. Sci. 2020, 82, 509–518.
Barnes, J.; Anderson, L.A.; Phillipson, J.D. St John’s wort (Hypericum perforatum L.): A review of its chemistry, pharmacology and clinical properties. J. Pharm. Pharmacol. 2001, 53, 583–600
Liu, X.; Jiang, C.; Li, Y.; Liu, W.; Yao, N.; Gao, M.; Ji, Y.; Huang, D.; Yin, Z.; Sun, Z.; et al. Evaluation of hypericin: Effect of aggregation on targeting biodistribution. J. Pharm. Sci. 2015, 104, 215–222.
Zupkó, I.; Kamuhabwa, A.R.; D’Hallewin, M.A.; Baert, L.; DeWitte, P.A. In vivo photodynamic activity of hypericin in transitional cell carcinoma bladder tumors. Int. J. Oncol. 2001, 18, 1099–1105
_||_
Ralf Paus L, Klein J, Permana PA, Owecki M, Chaldakov GN, Böhm M, et al. What are subcutaneous adipocytes really good for...? Exp Dermatol. 2007; 16(1): 45–47. 10.1111/j.1600-0625.2006.00519_1
Booth A, Magnuson A, Foster M. Detrimental and protective fat: body fat distribution and its relation to metabolic disease. Horm Mol Biol Clin Investig. 2014;17(1): 13–27. 10.1515/hmbci-2014-0009
Rivera-Gonzalez G, Shook B, Horsley V. Adipocytes in skin health and disease. Cold Spring Harb Perspect Med. 2014;4(3): 1–18
Singh A, Morris RJ. Innate immunity and the regulation and mobilization of keratinocyte stem cells: are the old players playing a new game? Exp Dermatol. 2012;21(9):660–664. doi: 10.1111/j.1600-0625.2012.01566.x
Kanitakis J. Anatomy, histology and immunohistochemistry of normal human skin. Eur J Dermatol. 2002;12(4):390–3
Lomas A, Leonardi-Bee J, Bath-Hextall F. A systematic review of worldwide incidence of nonmelanoma skin cancer. Br J Dermatol. 2012;166(5):1069–1080. doi: 10.1111/j.1365-2133.2012.10830.x.
Bouwstra JA, Pilgram GSK, Ponex M. Structure of the skin barrier. In: Elias PM, Feingold KR, editors. Skin Barrier. Taylor & Francis; New York: 2006. pp. 65–96.
Rogers HW, Weinstock MA, Feldman SR, Coldiron BM. Incidence Estimate of Nonmelanoma Skin Cancer (Keratinocyte Carcinomas) in the U.S. Population, 2012. JAMA Dermatol. 2015;151(10):1081–1086. doi: 10.1001/jamadermatol.2015.1187.
Cohen PR , Quiñones MT, Uebelhoer NS. Red Dot Basal Cell Carcinoma: Literature Review of a Unique Clinical Subtype of Basal Cell Carcinoma. Published online 2021 Feb 15.
Kasprzak JM, Xu YG. Diagnosis and management of lentigo maligna: a review. Drugs in Context 2015;4:212281.
Kyrgidis A, Tzellos TG , Triaridis S. Melanoma: Stem cells, sun exposure and hallmarks for carcinogenesis, molecular concepts and future clinical implications, J Carcinog. 2010; 9: 3
Griffin LL, Ali FR, Lear JT. Non‐melanoma skin cancer. Clinical Medicine 2016; 16(1): 62‐
WE Damsky and M Bosenberg. Melanocytic nevi and melanoma: unraveling a complex relationship Author manuscript; available in PMC 2018 May 2.
Madan V, Lear JT, Szeimies RM. Non‐melanoma skin cancer. Lancet 2010; 375(9715): 673‐
Lansbury L, Leonardi‐Bee J, Perkins W, Goodacre T, Tweed JA, Bath‐Hextall FJ. Interventions for non‐metastatic squamous cell carcinoma of the skin. Cochrane Database of Systematic Reviews 2010, Issue 4.
Motley RJ, Preston PW, Lawrence CM. Multi‐professional guidelines for the management of the patient with primary cutaneous squamous cell carcinoma. www.bsds.org.uk/uploads/pdfs/SCCguide2009.pdf (accessed 15 November 2017).
Hoorens I, Vossaert K, Pil L, Boone B, Schepper S, Ongenae K, et al. Total‐body examination vs lesion‐directed skin cancer screening. JAMA Dermatology 2016; 152(1): 27‐
Tan KB, Tan SH, Jaffar H, Simulators of Squamous Cell Carcinoma of the Skin: Diagnostic Challenges on Small Biopsies and Clinicopathological Correlation. Published online 2013 Jun 25.
Verkouteren JAC, Ramdas KHR, Wakkee M, Nijsten T. Epidemiology of basal cell carcinoma: scholarly review. British Journalof Dermatology. 2017; 177(2): 359‐
George S. W and R Jackson. Treatment of Squamous Cell Carcinoma of the Skin by Electrodesiccation and Curettage, Can Med Assoc J.1964Feb8;90(6): 408–413
Fania L, Didona D, Di Pietro FR , Verkhovskaia S, Morese R, Cutaneous Squamous Cell Carcinoma: From Pathophysiology to Novel Therapeutic Approaches. Biomedicines. 2021 Feb; 9(2): 171.
Foley P., Shumack S., Goh M., Cryotherapy and electrodessication and curettage , 25 November 2019 .
Soleymani T, Abrouk M, Kelly MK, An Analysis of Laser Therapy for the Treatment of Nonmelanoma Skin Cancer, Dermatol Surg. 2017 May.
AlamM,ArmstrongA,BordeauxKJ,BaumC,Guidelinesofcareforthemanagementofcutaneous squamous cell carcinoma Published online 2018 Jan 10.
Shi J, Xiao Z, Kamaly N, Farokhzad OC. Self- assembled targeted nanoparticles: Evolution of technologiesandbenchtobedsidetranslation.AccChemRes.2011;44:1123–1134.
Remant Bahadur K.C, Gold nanoparticle-based gene delivery: promises and challenges, Nanotechnol Rev 2014; 3(3): 269–280.
Rita Mendes , Gold Nanoparticle Approach to the Selective Delivery of Gene Silencing in Cancer— The CaseforCombinedDelivery?,Genes2017, 94.
Chang R, Hsu CF,-Bor author T. Fabrication of Chlorophyll-Incorporated Nanogels for Potential Applications in Photothermal Cancer Therapy. ACS Omega. 2018 Nov 30; 3(11): 16057–16062.Published online 2018 Nov 27
Cruz, L.J., Tacken, P.J., Rueda, F., Domingo, J.C., Albericio, F., Figdor, C.G.,. Targeting nanoparticles to dendriticcellsforimmunotherapy.Method.Enzymol.2012: 509, 143–16330.
Gunaydin G , Gedik ME., Ayan S. Photodynamic Therapy for the Treatment and Diagnosis of Cancer–AReviewoftheCurrentClinicalStatus.FrontChem. 2021; 9: 686303
Agostinis, P., Berg, K., Cengel, K. A., Foster, T. H., Girotti, A. W., Gollnick, S. O., et al. (2011). Photodynamic Therapy of Cancer: an Update. CA: AC ancer J.
Raab, O. Uber die Wirkung fluoreszierender Stoffe auf Infusorien. Zeitung Biol. 39, 524–526 (1900).
Prime, J. Les accidents toxiques par l'eosinate de sodium (Jouve and Boyer, Paris, 1900).
von Tappeiner, H. & Jodlbauer, A. Die sensiblilisierende Wirkung fluoreszierender Substanzer Gesammte Untersuchungen uber die photodynamische Erscheinerung (Voger, F. C., Leipzig, 1907).
Castano AP, Mroz P, and Hamblin MR. Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer. Author manuscript; available in PMC 2010 Sep
Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J. Photodynamic therapy of cancer: an update. CA Cancer J Clin. 2011 Jul-Aug;61(4):250-81. doi: 10.3322/caac.20114. Epub 2011 May 26. PMID: 21617154; PMCID: PMC3209659.
Dougherty TJ, Gomer CJ, Henderson BW, et al. Photodynamic therapy. J Natl Cancer Inst. 1998;90:889–905.
38_ Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003;3:380–387
Gunaydin G., Gedik ME., Ayan S. Photodynamic Therapy for the Treatment and Diagnosis of Cancer–Are view of the Current Clinical Status. Front Chem. 2021; 9: 6
Shik Kim H ,and Lee DY. Nanomedicine in Clinical Photodynamic Therapy for the Treatment of Brain Tumors. Biomedicines 2022, 10, 96.
Wan MT, and Y Lin J. Current evidence and applications of photodynamic therapy in dermatology. Published online 2014 May 21. doi: 10.2147/CCID.S35334.
Kou J,Dou D, and Yang L , Porphyrin photosensitizers in photodynamic therapy and its applications. 2017 Oct 6; 8(46): 81591–81603. Published online 2017 Aug 11. doi: 10.18632/oncotarget.20189
Castano AP, Demidova TN ,and. Hamblin MR, Mechanisms in photodynamic therapy: Part three—Photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction. Author manuscript; available in PMC 2014 Jul 23.
Ostańskaa E., Dorota D, Aebisherc B. The potential of photodynamic therapy in current breast cancer treatment methodologies. Received 10 June 2020, Revised 12 January 2021, Accepted 18 January 2021, Available online 28 January 2021, Version of Record 28 January 2021.
Cramers, P. et al. Foscan uptake and tissue distribution in relation to photodynamic efficacy. Br. J. Cancer 88, 283–290 (2003).
Pogue, B. W. et al. Photodynamic therapy with verteporfin in the radiation-induced fibrosarcoma-1 tumor causes enhanced radiation sensitivity. Cancer Res. 63, 1025–1033 (2003).
Ruoslahti, E. Specialization of tumour vasculature. Nature Rev. Cancer 2, 83–90 (2002).
McBride, G. Studies expand potential uses of photodynamic therapy. JNCI Cancer Spectrum 94, 1740–1742 (2002).
Duska, L. R., Hamblin, M. R., Miller, J. L. & Hasan, T. Combination photoimmunotherapy and cisplatin: effects on human ovarian cancer ex vivo. JNCI Cancer Spectrum 91, 1557–1563 (1999).
Nath S., Saad MA., Pigula M., Photoimmunotherapy of Ovarian Cancer: A Unique Niche in the Management of Advanced Disease. Cancers 2019, 11(12).
Hopper C. Photodynamic therapy: a clinical reality in the treatment of cancer. Lancet Oncol 2000. 19–212: 1.
Alexander C. Ku ̈ Photodynamic therapy, Medical Laser Application 2005; 20: 37–45
Plekhova N., Shevchenko O., Korshunova O, Development of Novel Tetrapyrrole Structure Photosensitizers for Cancer Photodynamic Therapy , 2022 Feb; 9(2): 82.Published online 2022 Feb 19. doi: 10.3390/bioengineering9020082
Khani T., Jadidi M., Hasanzadeh H,Moshfegh SH. Hematoporphyrin Is a Promising Sensitizer for Dual-Frequency Sono-photodynamic Therapy in Mice Breast Cancer. March 14, 2022.
Lin C, Zhang Y, Zhao Q, Sun P, Gao Z, Cui S. Analysis of the short-term effect of photodynamic therapy on primary bronchial lung cancer. Lasers Med Sci. 2021 Jun;36(4):753-761. doi: 10.1007/s10103-020-03080-5. Epub 2020 Jun 27. PMID: 32594348; PMCID: PMC8121718.
Nwogu C., Kloc A., Attwood K, Bshara W, Durrani F, Pandey R. Porfimer Sodium Versus PS785 for Photodynamic Therapy (PDT) of Lung Cancer Xenografts in Mice. J Surg Res. 2021 Jul;263:245-250. doi: 10.1016/j.jss.2020.12.067. Epub 2021 Mar 11. PMID: 33713956.
Liu H, Liu Y, Wang L, Ruan X, Wang F, Xu D, Zhang J, Jia X, Liu D. Evaluation on Short-Term Therapeutic Effect of 2 Porphyrin Photosensitizer-Mediated Photodynamic Therapy for Esophageal Cancer. Technol Cancer Res Treat. 2019 Jan 1;18:1533033819831989. doi: 10.1177/1533033819831989. PMID: 30885065; PMCID: PMC6425523.
Malina L, Tomankova KB, Malohlava J, Jiravova J, Manisova B, Zapletalova J, Kolarova H. The in vitro cytotoxicity of metal-complexes of porphyrin sensitizer intended for photodynamic therapy. Toxicol In Vitro. 2016 Aug;34:246-256. doi: 10.1016/j.tiv.2016.04.010. Epub 2016 Apr 20. PMID: 27107484.
Orenstein A, Kostenich G, Roitman L, Shechtman Y, Kopolovic Y, Ehrenberg B, Malik Z. A comparative study of tissue distribution and photodynamic therapy selectivity of chlorin e6, Photofrin II and ALA-induced protoporphyrin IX in a colon carcinoma model. Br J Cancer. 1996 Apr;73(8):937-44. doi: 10.1038/bjc.1996.185. PMID: 8611429; PMCID: PMC2075833.
Berger Y, Greppi A, Siri O, Neier R, Juillerat-Jeanneret L. Ethylene glycol and amino acid derivatives of 5-aminolevulinic acid as new photosensitizing precursors of protoporphyrin IX in cells. J Med Chem. 2000 Dec 14; 43(25): 4738-46. doi: 10.1021/jm000981q. PMID: 11123982.
Cohen DK, Lee PK. Photodynamic Therapy for Non-Melanoma Skin Cancers. Cancers (Basel). 2016 Oct 4;8(10):90. doi: 10.3390/cancers8100090. PMID: 27782043; PMCID: PMC5082380.
Horlings RK, Terra JB, Witjes MJ. mTHPC mediated, systemic photodynamic therapy (PDT) for nonmelanoma skin cancers: Case and literature review. Lasers Surg Med. 2015 Dec;47(10):779-87. doi: 10.1002/lsm.22429. Epub 2015 Oct 14. PMID: 26462858.
Nistorescu S, Udrea AM, Badea MA, Lungu I, Boni M, Tozar T, Dumitrache F, Maraloiu VA, Popescu RG, Fleaca C, Andronescu E, Dinischiotu A, Staicu A, Balas M. Low Blue Dose Photodynamic Therapy with Porphyrin-Iron Oxide Nanoparticles Complexes: In Vitro Study on Human Melanoma Cells. Pharmaceutics. 2021 Dec 10;13(12):2130. doi: 10.3390/pharmaceutics13122130. PMID: 34959411; PMCID: PMC8705854.
Dos Santos AF, de Almeida DRQ, Terra LF, Wailemann RAM, Gomes VM, Arini GS, Ravagnani FG, Baptista MS, Labriola L. Fluence Rate Determines PDT Efficiency in Breast Cancer Cells Displaying Different GSH Levels. Photochem Photobiol. 2020 May;96(3):658-667. doi: 10.1111/php.13182. Epub 2019 Dec 17. PMID: 31742700.
Huang L, Lin H, Chen Q, Yu L, Bai D. MPPa-PDT suppresses breast tumor migration/invasion by inhibiting Akt-NF-κB-dependent MMP-9 expression via ROS. BMC Cancer. 2019 Nov 29;19(1):1159. doi: 10.1186/s12885-019-6374-x. PMID: 31783821; PMCID: PMC6884812.
Wyss P, Schwarz V, Dobler-Girdziunaite D, Hornung R, Walt H, Degen A, Fehr M. Photodynamic therapy of locoregional breast cancer recurrences using a chlorin-type photosensitizer. Int J Cancer. 2001 Sep 1;93(5):720-4. doi: 10.1002/ijc.1400. PMID: 11477585.
Demartis S, Rassu G, Murgia S, Casula L, Giunchedi P, Gavini E. Improving Dermal Delivery of Rose Bengal by Deformable Lipid Nanovesicles for Topical Treatment of Melanoma. Mol Pharm. 2021 Nov 1;18(11):4046-4057. doi: 10.1021/acs.molpharmaceut.1c00468. Epub 2021 Sep 23. PMID: 34554752; PMCID: PMC8564756.
Borodziuk A, Kowalik P, Duda M, Wojciechowski T, Minikayev R, Kalinowska D, Klepka M, Sobczak K, Kłopotowski Ł, Sikora B. Unmodified Rose Bengal photosensitizer conjugated with NaYF4:Yb,Er upconverting nanoparticles for efficient photodynamic therapy. Nanotechnology. 2020 Nov 13; 31(46): 465101. doi: 10.1088/1361-6528/aba975. PMID: 32717731.
Ramirez R, Mazzocco T,S Rose bengal as a photosensitizer in the photodynamic therapy of breast cancer cell lines ,Proceedings of the SPIE, Volume 11070, id. 11070A1 4 pp. (2019).Pub Date:August 2019 10.1117/12.2525456 , 2019SPIE11070E..A1A
Dhillon SK, Porter SL, Rizk N, Sheng Y, McKaig T, Burnett K, White B, Nesbitt H, Matin RN, McHale AP, Callan B, Callan JF. Rose Bengal-Amphiphilic Peptide Conjugate for Enhanced Photodynamic Therapy of Malignant Melanoma. J Med Chem. 2020 Feb 13;63(3):1328-1336. doi: 10.1021/acs.jmedchem.9b01802. Epub 2020 Jan 27. PMID: 31940202.
Newman DJ, Cragg GM. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J Nat Prod. 2020 Mar 27;83(3):770-803. doi: 10.1021/acs.jnatprod.9b01285. Epub 2020 Mar 12. PMID: 32162523.
Saide A, Lauritano C, Ianora A. Pheophorbide a: State of the Art. Mar Drugs. 2020 May 14;18(5):257. doi: 10.3390/md18050257. PMID: 32423035; PMCID: PMC7281735.
Tang P.M., Chan J.Y., Au S.W., Kong S.K., Tsui S.K., Waye M.M., Mak T.C., Fong W.P., Fung K.P. Pheophorbide a an active compound isolated from Scutellaria barbata, possesses photodynamic activities by inducing apoptosis in human hepatocellular carcinoma. Cancer Biol. Ther. 2006;5:1111–1116. doi: 10.4161/cbt.5.9.2950.
Tang P.M., Liu X.Z., Zhang D.M., Fong W.P., Fung K.P. Pheophorbide a based photodynamic therapy induces apoptosis via mitochondrial-mediated pathway in human uterine carcinosarcoma. Cancer Biol. Ther. 2009;8:533–539. doi: 10.4161/cbt.8.6.7694.
Bergstrom L.C., Vucenik I., Hagen I.K., Chernomorsky S.A., Poretz R.D. In-vitro photocytotoxicity of lysosomotropic immunoliposomes containing pheophorbide a with human bladder carcinoma cells. J. Photochem. Photobiol. B. 1994;24:17–23. doi: 10.1016/1011-1344(94)07008-3.
Chung P.S., He P., Shin J.I., Hwang H.J., Lee S.J., Ahn J.C. Photodynamic therapy with 9-hydroxypheophorbide alpha on AMC-HN-3 human head and neck cancer cells: Induction of apoptosis via photoactivation of mitochondria and endoplasmic reticulum. Cancer Biol. Ther. 2009;8:1343–1351. doi: 10.4161/cbt.8.14.8693.
Qumseya B.J., David W., Wolfsen H.C. Photodynamic therapy for barrett’s esophagus and esophageal carcinoma. Clin. Endosc. 2013;46:30–37. doi: 10.5946/ce.2013.46.1.30.
Lee W.Y., Lim D.S., Ko S.H., Park Y.J., Ryu K.S., Ahn M.Y., Kim Y.R., Lee D.W., Cho C.W. Photoactivation of pheophorbide a induces a mitochondrial-mediated apoptosis in Jurkat leukaemia cells. J. Photochem. Photobiol. B. 2004;75:119–126. doi: 10.1016/j.jphotobiol.2004.05.005.
Della Pietra E., Simonella F., Bonavida B., Xodo L.E., Rapozzi V. Repeated sub-optimal photodynamic treatments with pheophorbide a induce an epithelial mesenchymal transition in prostate cancer cells via nitric oxide. Nitric Oxide. 2015;45:43–53. doi: 10.1016/j.niox.2015.02.005
Gheewala T., Skwor T., Munirathinam G. Photodynamic therapy using pheophorbide and 670 nm LEDs exhibits anti-cancer effects in-vitro in androgen dependent prostate cancer. Photodiagn. Photodyn. Ther. 2018;21:130–137. doi: 10.1016/j.pdpdt.2017.10.026.
Wu D., Liu Z., Fu Y., Zhang Y., Tang N., Wang Q., Tao L. Efficacy of 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a in photodynamic therapy of human esophageal squamous cancer cells. Oncol. Lett. 2013;6:1111–1119. doi: 10.3892/ol.2013.1493.
Ghosh S, Banerjee S, Sil PC. The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: A recent update. Food Chem Toxicol. 2015 Sep;83:111-24. doi: 10.1016/j.fct.2015.05.022. Epub 2015 Jun 9. PMID: 26066364.
Dujic J, Kippenberger S, Ramirez-Bosca A, Diaz-Alperi J, Bereiter-Hahn J, Kaufmann R, Bernd A, Hofmann M. Curcumin in combination with visible light inhibits tumor growth in a xenograft tumor model. Int J Cancer. 2009 Mar 15;124(6):1422-8. doi: 10.1002/ijc.23997. PMID: 19035461.
Xin, Y.; Huang, Q.; Zhang, P.; Guo, W.W.; Zhang, L.Z.; Jiang, G. Demethoxycurcumin in combination with ultraviolet radiation B induces apoptosis through the mitochondrial pathway and caspase activation in A431 and HaCaT cells. Tumour Biol. 2017, 39,1010428317706216.
Abdel Fadeel, D.A.; Kamel, R.; Fadel, M. PEGylated lipid nanocarrier for enhancing photodynamic therapy of skin carcinoma using curcumin: In-vitro/in-vivo studies and histopathological examination. Sci. Rep. 2020, 10, 10435.
Kamel, A.E.; Fadel, M.; Louis, D. Curcumin-loaded nanostructured lipid carriers prepared using Peceol™ and olive oil in photodynamic therapy: Development and application in breast cancer cell line. Int. J. Nanomed. 2019, 14, 5073–5085.
Raschpichler, M.; Preis, E.; Pinnapireddy, S.R.; Baghdan, E.; Pourasghar, M.; Schneider, M.; Bakowsky, U. Photodynamic inactivation of circulating tumor cells: An innovative approach against metastatic cancer. Eur. J. Pharm. Biopharm. 2020, 157,38–46.
Halevas, E.; Arvanitidou, M.; Mavroidi, B.; Hatzidimitriou, A.G.; Politopoulos, K.; Alexandratou, E.; Pelecanou, M.; Sagnou, M. A novel curcumin gallium complex as photosensitizer in photodynamic therapy: Synthesis, structural and physicochemical characterization, photophysical properties and in vitro studies against breast cancer cells. J. Mol. Struct. 2021, 1240, 130485
Mohammadi, S.; Soratijahromi, E.; Dehdari Vais, R.; Sattarahmady, N. Phototherapy and Sonotherapy of Melanoma Cancer Cells. Using Nanoparticles of Selenium-Polyethylene Glycol-Curcumin as a Dual-Mode Sensitizer. J. Biomed. Phys. Eng. 2020, 10, 597–606.
Wo´zniak, M.; Nowak, M.; Lazebna, A.; Wi˛ecek, K.; Jabło ´ nska, I.; Szpadel, K.; Grzeszczak, A.; Gubernator, J.; Ziółkowski, P.The Comparison of In Vitro Photosensitizing Efficacy of Curcumin-Loaded Liposomes Following Photodynamic Therapy on Melanoma MUG-Mel2, Squamous Cell Carcinoma SCC-25, and Normal Keratinocyte HaCaT Cells. Pharmaceuticals 2021, 14, 374.
Comini LR, Fernandez IM, Rumie Vittar NB, Núñez Montoya SC, Cabrera JL, Rivarola VA. Photodynamic activity of anthraquinones isolated from Heterophyllaea pustulata Hook f. (Rubiaceae) on MCF-7c3 breast cancer cells. Phytomedicine. 2011 Sep 15;18(12):1093-5. doi: 10.1016/j.phymed.2011.05.008. Epub 2011 Jun 12. PMID: 21665453.
Kubrak TP, Kołodziej P, Sawicki J, Mazur A, Koziorowska K, Aebisher D. Some Natural Photosensitizers and Their Medicinal Properties for Use in Photodynamic Therapy. Molecules. 2022 Feb 10;27(4):1192. doi: 10.3390/molecules27041192. PMID: 35208984; PMCID: PMC8879555.
Marles, R.J.; Compadre, R.L.; Compadre, C.M.; Soucy-Breau, C.; Redmond, R.W.; Duval, F.; Mehta, B.; Morand, P.; Scaiano, J.C.; Arnason, J.T. Thiophenes as mosquito larvicides: Structure-toxicity relationship analysis. Pestic. Biochem. Physiol. 1991, 41, 89–100.
Zhang, P.; Jin, W.-R.; Shi, Q.; He, H.; Ma, Z.; Qu, H.-B. Two novel thiophenes from Echinops grijissi Hance. J. Asian Nat. Prod. Res.2008, 10, 977–981
Naithani, R.; Mehta, R.G.; Shukla, D.; Chandersekera, S.N.; Moriarty, R.M. Antiviral Activity of Phytochemi-cals: A Current Perspective. Diet. Compon. Immune Funct. 2010, 421–468.
Gomaa, I.; Ali, S.E.; El-Tayeb, T.A.; Abdel-Kader, M.H. Chlorophyll derivative mediated PDT versus methotrexate: An in vitro study using MCF-7 cells. Photodiagn. Photodyn. Ther. 2012, 9, 362–368.
Ichimaru, Y.; Kanaeda, N.; Tominaga, S.; Suzui, M.; Maeda, T.; Fujii, H.; Nakao, M.; Yoshioka, H. Sasa veitchii extract induces anticancer effects via inhibition of cyclin D1 expression in MCF-7 cells. Nagoya J. Med. Sci. 2020, 82, 509–518.
Barnes, J.; Anderson, L.A.; Phillipson, J.D. St John’s wort (Hypericum perforatum L.): A review of its chemistry, pharmacology and clinical properties. J. Pharm. Pharmacol. 2001, 53, 583–600
Liu, X.; Jiang, C.; Li, Y.; Liu, W.; Yao, N.; Gao, M.; Ji, Y.; Huang, D.; Yin, Z.; Sun, Z.; et al. Evaluation of hypericin: Effect of aggregation on targeting biodistribution. J. Pharm. Sci. 2015, 104, 215–222.
Zupkó, I.; Kamuhabwa, A.R.; D’Hallewin, M.A.; Baert, L.; DeWitte, P.A. In vivo photodynamic activity of hypericin in transitional cell carcinoma bladder tumors. Int. J. Oncol. 2001, 18, 1099–1105