Effects of Paclobutrazol Application on Plants as a Chilling Stress Ameliorator
Subject Areas : Journal of Crop Nutrition Science
1 - Assistant Professor, Department of Agriculture, Ramhormoz Branch, Islamic Azad University, Ramhormoz, Iran.
Keywords: Photosynthetic pigments, protection, Environmental stresses, <i>Antioxidants, Triazoles</i>,
Abstract :
Paclobutrazol ((2RS, 3RS)-1-4(-chlorophenyl)-4,4-dimethyl-2-1,2,4-triazol-1-yl-penten-3-ol) is a member of the triazole family, that protects plants against various stresses. Probably paclobutrazol affects the morphology and biochemical and physiological reactions of plant by regulating the level of endogenous hormones (inhibition of gibberellin biosynthesis, increase of abscisic acid, decrease of ethylene, change of cytokinin content and modulation of their transporter genes). Morphological effects of paclobutrazol are include reduction of stem length and lower internode length, increase in stem physical strength, thicker stems, increase in leaf thickness, thicker epicuticular wax layer on leaf, reduction of leaf area, larger chloroplasts, and increase in root growth. Biochemical effects of paclobutrazol include the increase of proline, chlorophyll and carotenoids, polyamines, protein, and soluble carbohydrates and the detoxification of reactive oxygen species through the increase of antioxidant activities. These changes increase the tolerance of plants to environmental stress. One of the environmental stresses that disrupts the natural activity of plants, and the use of paclobutrazol helps to moderate its negative effects, is chilling stress. Chilling stress, especially in tropical and sub-tropical species, through changes in biochemical and physiological processes, causes negative effects on plants. Paclobutrazol protects plants against chilling stress and ameliorates chilling damage by strengthening the antioxidant defense system, regulating hormone levels, and improving photosynthesis system. In this article, the role of paclobutrazol to alleviate the adverse effects of cold stress in plants is examined. Moreover, various morphological, biochemical and physiological processes leading to improved crop production under the effect of paclobutrazol are discoursed in detail.
Abdalla, N., N. Taha, Y. Bayoumi, H. El-Ramady. and T. A. Shalaby. 2021. Paclobutrazol applications in agriculture, plant tissue cultures and its potential as stress ameliorant: A mini review. Env. Biodiv. Soil Security. 5:245-257.
Alizadeh Forutan, M., H. Pirdashti. and Y. Yaghoubian. 2017. The effect of Piriformospora indica seed bio-priming and paclobutrazol foliar spraying on tolerance to chilling stress in green beans (Phaseolus vulgaris L.). Environmental Stresses in Crop Sciences. 10(3): 459-474. DOI: 10.22077/escs.2017.615
Amooaghaie, R. and E. Shariat. 2014. Effect of cultivar, cold and paclobutrazol on growth, chlorophyll content and cell membrane injury in Phaseolus vulgaris plantlet. Iran. J. Plant Biol. 6(22): 77-90.
Anwar, S., J. Kuai, S. Khan, A. Kausar, M. Rehman, N. Shah. and G. Zhou. 2017. Soaking seeds with paclobutrazol enhances winter survival and yield of rapeseed in a rice-rapeseed relay cropping system. Int. J. Plant Prod. 11(4): 491-504.
DOI: 10.22069ijpp.2017.3713
Attarzadeh, M., H. Balouchi. and M. R. Baziar. 2018. Effects of paclobutrazol’s pre-treatment on cold tolerance induction in soybean seedling. Ital. J. Agron. 13: 1034. DOI: 10.4081/ija.2018.1034
Babarashi, E., A. Rokhzadi, B. Pasari. and Kh. Mohammadi. 2021. Ameliorating effects of exogenous paclobutrazol and putrescine on mung bean [Vigna radiata (L.) Wilczek] under water deficit stress. Plant, Soil and Environment. 67(1): 40-45. https://doi.org/10.17221/437/2020-PSE
Baninasab, B. 2009. Ameliration of chilling stress by paclobutrazol in watermelo seedlings. Sci. Hortic. 121: 144-148.
Berova, M., Z. Zlatev. and N. Stoeva. 2002. Effect of paclobutrazol on wheat seedlings under low temperature stress. Bulg.J. Plant Physiol. 28(1-2): 75-84.
Bindu, G.V., M. Sharma. and K. K. Upreti. 2017. Polyamine and ethylene changes during floral initiation in response to paclobutrazol in mango (Mangifera indica L.). Int. J. Environ. Agric. Res. 3(7): 34-40.
Chandra, S. and A. Roychoudhury. 2020. Penconazole, paclobutrazol, and triacontanol in overcoming environmental stress in plants. In: Roychoudhury, A. and D.K. Tripathi (Eds.). Protective Chemical Agents in the Amelioration of Plant Abiotic Stress: Biochemical and Molecular Perspectives. 510−534. John Wiley Sons Ltd. DOI:10.1002/9781119552154.ch26
Das, K. and A. Roychoudhury. 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2: 53. DOI: 10.3389/fenvs.2014.00053
Desta, B. and G. Amare. 2021. Paclobutrazol as a Plant Growth Regulator. Chem. Biol. Technol. Aagric. 8(1): 1-15. DOI: 10.1186/s40538-020-00199-z.
Ghasemi Soluklui, A. A., A. Ershadi, Z. Tabatabaee. and E. Fallahi. 2014. Paclobutrazol-induced biochemical changes in pomegranate (Punica granatum L.) cv. ‘Malas Saveh’under freezing stress. Int. J. Hortic. Sci. Technol. 1(2): 181-190.
Gull, A., A.Ahmad Lone. and N. Ul Islam Wani. 2019. Biotic and abiotic stresses in plants. Abiotic and biotic stress in plants. DOI:10.5772/intechopen.85832
Hayat, S., Q. Hayat, M. N. Alyemeni, A. S. Wani, J. Pichtel. and A. Ahmad. 2012. Role of proline under changing environments. Plant Signal. Behav. 7(11): 1456–1466. DOI: 10.4161/psb.21949
Hu, Y., W. Yu, T. Liu, M. Shafi, L. Song, X. Du, X. Huang, Y. Yue. and J. Wu. 2017. Effects of paclobutrazol on cultivars of Chinese bayberry (Myrica rubra) under salinity stress. Photosynthetica. 55: 443-453.
Hütsch, B.W., and S. Schubert. 2021. Water-use efficiency of maize may be increased by the plant growth regulator paclobutrazol. J. Agro. Crop Sci. 207: 521-534. DOI:10.1111/jac.12456
Jafari, S. R., Kh. Manuchehri Kalantari. and M. Turkzadeh. 2006. The evaluation of paclobutrazol effects on increase cold hardiness in tomato seedlings (lycopersicum esculentum L.). Iran. J. Biol. 19(3): 290-298.
Jenks, M. A., L. Andersen, R. S. Teusink. and M. H. Williams. 2001. Leaf cuticular waxes of potted rose cultivars as affected by plant development, drought and paclobutrazol treatments. Physiol Plant. 112:62-70.
Kamran, M., I. Ahmad, X. Wu, T. Liu, R. Ding. and Q. Han. 2018a. Application of paclobutrazol: a strategy for inducing lodging resistance of wheat through mediation of plant height, stem physical strength, and lignin biosynthesis. Env. Sci. Pollut. Res., 25, 29366–29378. DOI: 10.1007/s11356-018-2965-3
Kamran, M., S. Wennan, I. Ahmad, M. Xiangping, C. Wenwen, Z. Xudong, M. Siwei, A. Khan, H. Qingfang. and L. Tiening. 2018b. Application of paclobutrazol affect maize grain yield by regulating root morphological and physiological characteristics under a semi-arid region. Scientific Reports. 8:4818. DOI:10.1038/s41598-018-23166-z
Khunpon, B., S. Cha-Um, B. Faiyue, J. Uthaibutra. and K. Saengnil. 2018. Paclobutrazol mitigates salt stress in indica rice seedlings by enhancing glutathione metabolism and glyoxalase system. Biologia. 73: 1267-1276.
DOI: 10.2478/s11756-018-0132-4.
Kumar, S., S. Ghatty, J. Satyanarayana, A. Guha, B. S. K. Chaitanya. and A. R. Reddy. 2012. Paclobutrazol treatment as a potential strategy for higher seed and oil yield in field-grown Camelina sativa L. Crantz. BMC Res. Notes. 5:1–13.
Lin, K. H., F. H. Pai, S. Y. Hwang. and H. F. Lo. 2006. Pre-treating paclobutrazol enhanced chilling tolerance of sweetpotato. Plant Growth Regul. 49:249-262. DOI: 10.1007/s10725-006-9135-1
Liu, B., S. Long, K. Liu, T. Zhu, J. Gong, S. Gao, R. Wang, L. Zhang, T. Liu. and Y. Xu. 2022. Paclobutrazol ameliorates low-light-induced damage by improving photosynthesis, antioxidant defense system, and regulating hormone levels in tall fescue. Int. J. Mol. Sci. 23: 9966. https://doi.org/10.3390/ijms23179966
Liu, X., Y. Zhou, J. Xiao. and F. Bao. 2018. Effects of chilling on the structure, fuction and development of chloroplasts. Front. Plant Sci. 9: 1715. DOI: 10.3389/fpls.2018.01715
Maheshwari, C., N. K. Garg, M. Hasan, V. Prathap, N. L. Meena, A. Singh. and A. Tyagi. 2022. Insight of PBZ mediated drought amelioration in crop plants. Front. Plant Sci. 13:1008993.
DOI: 10.3389/fpls.2022.1008993
Mehmood, M. Z., G. Qadir, O. Afzal, A. M. Ud Din, M. A. Raza, I. Khan, M. J. Hassan, S. A. Awan, S. Ahmad, M. Ansar, M. A. Aslam. and M. Ahmed. 2021. Paclobutrazol improves sesame yield by increasing dry matter accumulation and reducing seed shattering under rainfed conditions. Int. J. Plant Prod. 15: 337–349. DOI:10.1007/s42106-021-00132-w
Moradi, S., B. Baninasab, M. Gholami. and C. Ghobadi. 2016. Paclobutrazol application enhances antioxidant enzyme activities in pomegranate plants affected by cold stress. J. Hortic. Sci. Biotechnol. DOI:10.1080/14620316.2016.1224605
Nagar, Sh., V. P. Singh, A. Arora, R. Dhakar, N. Singh, G.p. Singh, Sh. Meena, S. Kumar. and R. Ramakrishnan. 2021. Understanding the role of gibberellic acid and paclobutrazol in terminal heat stress tolerance in wheat. Front. Plant Sci. 19(12): 692252. DOI: 10.3389/fpls.2021.692252
Neamah, Sh., and A. H. Hamad. 2020. The effects of paclobutrazol on enhancing tolerance of Plantago major L. to cadmium stress in vitro. Aust. J. Crop Sci. 14(12): 2028-2035.
Nivedithadevi, D., R. Somasundaram. and R. Pannerselvam. 2012. Effect of abscisic acid, paclobutrazol and salicylic acid on the growth and pigment variation in Solanum Trilobatum. Int. J. Drug Dev. Res. 4(3): 236- 246.
Opio, P., H. Tomiyama, T. Saito, K. Ohkawa, H. Ohara. and S. Kondo. 2020. Paclobutrazol elevates auxin and abscisic acid, reduces gibberellins and zeatin and modulates their transporter genes in Marubakaido apple (Malus prunifolia Borkh. var. ringo Asami) rootstocks. Plant Physiol. Biochem. 155: 502-511. DOI:10.1016/j.plaphy.2020.08.003
Pandey, P., V. Irulappan, M.V. Bagavathiannan. and M. Senthil-Kumar. 2017. Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front. Plant Sci. 8:537. DOI: 10.3389/fpls.2017.00537
Peng, X., M. Li, H. Wu, H. Chen. and Z. Zhang. 2021. Co-regulation role of endogenous hormones and transcriptomics profiling under cold stress in Tetrastigma hemsleyanum. J. Plant Growth Regul. 40: 1992-2006. https://doi.org/10.1007/s00344-020-10246-6
Pinhero, R. G. and R. A. Fletcher. 1994. Paclobutrazol and ancymidol protect corn seedlings from high and low temperature stresses. Plant Growth Regul. 15(1): 47–53. Doi:10.1007/bf00024676
Ramin, A. A. 2009. Improving germination performance and chilling tolerance in cucumber seedlings with paclobutrazol. Int. J. Veg. Sci. 15: 173-184. DOI: 10.1080/19315260802685768
Roostaei, P., M. Rasouli. and A. Babaei. 2019. The treatment effect of paclobutrazol on some effective physiological traits of cold stress tolerance in bud grape of cv. Bidane Sefide. J. Appl. Biol. 32(3): 21-36. DOI: 10.22051/JAB.2020.4406
Roseli, A. N. M., T. F. Ying. and M. F. Ramlan. 2012. Morphological and physiological response of Syzygium myrtifolium (Roxb) Walp. to paclobutrazol. Sains Malays. 41(10):1187–92.
Saleh, A. 2007. Amelioration of chilling injuries in mung bean (Vigna radiata L.) seedlings by paclobutrazol, abscisic acid and hydrogen peroxide. Am. J. Plant Physiol. 2(6): 318-332.
Sankar, B., K. Karthishwaran. and R. Somasundaram. 2013. Leaf anatomical changes in peanut plants in relation to drought stress with or without paclobutrazol and abscisic acid. J. Phytol. 5: 25-29.
Santos Filho, F. B., T. I. Silva, M. G. Dias, A. C. L. Alves, and J. A. S. Grossi. 2022. Paclobutrazol reduces growth and increases chlorophyll indices and gas exchanges of basil (Ocimum basilicum). Braz. J. Biol. 82: e262364.
https://doi.org/10.1590/1519-6984.262364
Shaki, F., M. Rezayian, H. Ebrahimzadeh. and V. Niknam. 2022. Role of triazolic compounds in underlying mechanisms of plant stress tolerance: a review. Iran. J. Plant Physiol. 12(1), 3943-3954.
Shao, J., K. Huang, M. Batool, F. Idrees, R. Afzal, M. Haroon, H. A. Noushahi, W. Wu, Q. Hu, X. Lu, G. Huang, M. Aamer, M.U. Hassan. and A. El Sabagh. 2022. Versatile roles of polyamines in improving abiotic stress tolerance of plants. Front. Plant Sci. 13:1003155. DOI: 10.3389/fpls. 2022.1003155
Sofy, M., Kh. Elhindi, S. Farouk. and M. A. Alotaibi. 2020. Zinc and paclobutrazol mediated regulation of growth, upregulating antioxidant aptitude and plant productivity of pea plants under salinity. Plants. 14: 9(9): 1197. DOI: 10.3390/plants9091197.
Sopher, C. R., M. Kori, N. Huner, A. E. Moore. and R. A. Fletcher. 1999. Chloroplastic changes associated with paclobutrazol-induced stress protection in maize seedlings. Canad. J. Bot. 77(2): 279-290.
Soumya, P. R. and P. Kumar. 2017. Optimization of paclobutrazol dose for foliar and drenching applications under water deficit stress in chickpea (Cicer arietinum L.). Int. J. Bio-resour. Stress Manag. 8(4): 566-573.
Tekalign, T. and P. S. Hammes. 2005. Growth and biomass production in potato grown in the hot tropics as influenced by paclobutrazol. Plant Growth Regul. 45:37–46.
Tekalign, T., S. Hammes. and J. Robbertse. 2005. Paclobutrazol-induced leaf, stem, and root anatomical modifications in potato. Hort. Sci. 40(5): 1343-1346.
Tesfahun, W. 2018. A review on: Response of crops to paclobutrazol application, Cogent Food Agric. 4:1. DOI: 10.1080/23311932.2018.1525169
Urfan, M., H. R. Hakla, Sh. Sharma, M. Khajuria, S. B. Satbhia, D. Vyas, S. Bhougal, N. Yadav. and S. Pal. 2022. Paclobutrazol improves surface water use efficiency by regulating allometric trait behavior in maize. Chemosphere. 307(3): 135958.
Wu, J., M. Nadeem, L. Galagedara, R. Thomas. and M. Cheema. 2022. Effects of chilling stress on morphological, physiological, and biochemical attributes of silage corn genotypes during seedling establishment. Plants. 11(9):1217. DOI: 10.3390/plants11091217
Yadav, D. K. and A. Hemantaranjan. 2017. Mitigating effects of paclobutrazol on flooding stress damage by shifting biochemical and antioxidant defense mechanisms in mungbean (Vigna radiata L.) at pre-flowering stage. Legum. Res. 40(3): 453-461.
Yang, Y., R. Zhang, X. Duan, Z. Hu, S. Shen. and P. Leng. 2019. Natural cold acclimation of Ligustrum lucidum in response to exogenous application of paclobutrazol in Beijing. Acta Physiol. Plant. 41:15. DOI: 10.1007/s11738-018-2800-y
Zahid, Gh., S. Lftikhar, F. Shimira, H.M. Ahmad. and Y. Aka Kacar. 2023. An overview and recent progress of plant growth regulators (PGRs) in the mitigation of abiotic stresses in fruits: A review. Sci. Hortic. 309: 111621. DOI:10.1016/j.scienta .2022.111621
Zhao, C., H. Guan, X. Yuan, X. Li, L. Gao, C. Shen. and J. Tan. 2018. Effects of paclobutrazol on physiological parameters of dahlia under heat stress. Agric. Biotechnol. 7(5): 67-70.
Zhou, Z., H. Ma, K. Liang, G Huang. and K. Pinyopusarek. 2012. Improved tolerance of Teak (Tectona grandis L.f.) seedlings to low-temperature stress by the combined effect of arbuscular mycorrhiza and paclobutrazol. J.Plant Growth Regul. 31:427-435. DOI: 10.1007/s00344-011-9252-6.
Zhu, L. H., A. van de Peppel, X. Y. Li. and M. Welander. 2004. Changes of leaf water potential and endogenous cytokinins in young apple trees treated with or without paclobutrazol under drought conditions. Sci. Hortic. 99: 133–141.