How Does Immersion of saffron Corm in Some Hormones and Humic Acid Affect the Morphological Characteristics of Plant under Salinity Stress
Subject Areas : Journal of Crop Nutrition ScienceSaeed Moradizadeh 1 , Hossein Ali Asadi-Gharneh 2 , Mohammad Reza Naderi Darbaghshahi 3
1 - MSc. Graduated, Department of Horticulture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
2 - Associate Professor, Department of Horticulture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
3 - Associate Professor, Department of Agronomy and Plant Breeding, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
Keywords: Salicylic acid, Fresh weight, <i>Chlorophyll, Jasmonic acid, Vegetative</i>,
Abstract :
BACKGROUND: The use of growth-promoting hormones and organic acids is one of the ways to deal with environmental stresses.OBJECTIVES: The present study was conducted to assess the effect of these treatments on saffron vegetative and reproductive traits, to use organic inputs properly, take steps towards sustainable production and increase quality of important medicinal plant.METHODS: Current research carried out via factorial experiment was conducted in Islamic Azad University, Isfahan (Khorasgan) Branch (2018-2019) in a completely randomized design with three replications. The treatments were control, Salicylic acid (1 and 2 mM), humic acid (15 and 30 mM) and Jasmonic acid (5 and 10 μM) with two salinity levels (1 and 4 ds.m-1). The evaluated traits included chlorophyll a, b and total chlorophyll, the number of flowers, flowering stem and leaves, petiole length, fresh and dry weights of leaves, stigma weight, and fresh weight of flowers.RESULT: The highest levels of chlorophyll a and total chlorophyll were belonging to humic acid 30 and control treatments under salinity 1. The highest amount of chlorophyll b was observed in humic acid 30 and control treatments under salinity 1 and salicylic acid 2 under salinity 4. The highest number and fresh weight of flowers were obtained from the control treatment under salinity 1. The tallest petioles and flowering stems were observed in Jasmonic acid10 under salinity1. The highest leaf length was belonging to salicylic acid2 under salinity1. The highest leaf fresh weight was belonging to salicylic acid2 under salinity1 whereas of Humic acid15 under salinity1 produced the highest dry weight of plant leaves. The highest stigma weight was observed in Jasmonic acid5 and the control under salinity1. As a result, application of plant growth regulators and humic acid can reduce effect of salinity stress in saffron.CONCLUSION: As a final conclusion of this study, it can be said that the use of growth-promoting hormones (salicylic acid) and organic acids (humic acid) under environmental stress conditions can improve morphological and vegetative characteristics such as chlorophyll and biomass produced in some plants such as saffron.
Ahmad Baba, S., A. Hussain Malik, Z. Ahmed Wani, T. Mohiuddin, Z. Shah, N. Abbas. and N. Ashraf. 2015. Phytochemical analysis and antioxidant activity of different tissue types of Crocus sativus and oxidative stress alleviating potential of saffron extract in plants, bacteria, and yeast. South African J. Bot. 99: 80–87.
Ahmad, T., R. Khan. and T. Nawaz Khattak. 2018. Effect of humic acid and fulvic acid based liquid and foliar fertilizers on the yield of wheat crop. J. Plant Nutrition. 41: 2438–2445.
Ahmad, Y. M., E. A. Shahlaby. and N. T. Shnan. 2011. The use of organic and inorganic cultures in improving vegetative growth, yield characters and antioxidant activity of roselle plants (Hibiscus sabdariffa L.). African J. Biotech. 10: 1988-1996.
Ali, A. Y. A., M. E. H. Ibrahim, G. Zhou, N. E. A. Nimir, X. Jiao. and G. Zhu. 2020. Exogenous Jasmonic acid and humic acid increased salinity tolerance of sorghum. Agron. J. 112(2): 871-884.
Ansaryan Mahabadi, Sh., I. Alahdadi, M. Ghorbani Javid. and E. Soltani. 2019. Effect of corm priming with salicylic acid and mother corm weight on flowering and qualitative characteristics of saffron stigma. Saffron Agron. Tech. 7(1): 41-53.
Ashrafi, E., J. Razmjoo. and M. Zahedi. 2018. Effect of salt stress on growth and ion accumulation of alfalfa (Medicago sativa L.) cultivars. J. Plant Nutrition. 41: 818–831.
Avarseji, Z., M. Kafi, M. Sabet Teimouri. and K. Orooji. 2013. Investigation of salinity stress and potassium levels on morph physiological characteristics of saffron. J. Plant Nutrition. 36: 299-310.
Azeem, U. 2018. Ameliorating nickel stress by Jasmonic acid treatment in Zea mays L. Russian Agri. Sci. 44: 209–215.
Bayat, M., R. Amirnia, M. Tajbakhsh. and M. Ramezani. 2016. Evaluation of saffron ecotypes for stigma yield and yield components using different maternal corm weights. J. Plant Physiol. Breed. 6: 53–64.
Bhattarai, S., D. Biswas, Y. B. Fu. and B. Biligetu. 2020. Morphological, physiological, and genetic responses to salt stress in alfalfa: a review. Agronomy. 10(4): 577-592.
doi: 10.3390/agronomy10040577.
Canellas, L. P., F. L. Olivares, N. O. A. Canellas, P. L. Mazzei. and A. Piccolo. 2019. Humic acids increase the maize seedlings exudation yield Chem. Biol. Tech. Agri. 6(3): 1-14.
Chaudhary, D., N. Narula, S. S. Sindhu. and R. K. Behl. 2013. Plant growth stimulation of wheat (Triticum aestivum L.) by inoculation of salinity tolerant Azotobacter strains. Physiol. Molecular Biol. Plants. 19: 515–519.
Chen, H. Y., E. J. Hsieh, M. C. Cheng, C. Y. Chen, S. Y. Hwang. and T. P. Lin. 2016. ORA47 (octadecanoid-responsive AP2/ERF-domain transcription factor 47) regulates Jasmonic acid and abscisic acid biosynthesis and signaling through binding to a novel cis-element. New Phytologist. 211: 599–613.
De Aquino, A. M., L. P. Canellas, A. P. S. da Silva, N. O. A. Canellas, L. S. Lima, F. L. Olivares, A. Piccolo. and R. Spaccini. 2019. Evaluation of molecular properties of humic acids from vermicompost by 13C-CPMAS-NMR spectroscopy and thermochemolysis–GC–MS. J. Analytical Appl. Pyrolysis. 141: 104634.
De Ollas, C., V. Arbona. and A. Gómez-Cadenas. 2015. Jasmonic acid interacts with abscisic acid to regulate plant responses to water stress conditions. Plant Signaling Behavior. 10: e1078953.
Dilnur, T., Z. Peng, Z. Pan, K. K. Palanga, Y. Jia, W. Gong. and X. Du. 2019. Association analysis of salt tolerance in Asiatic cotton (Gossypium arboretum) with SNP markers. Intl. J. Molecular Sci. 20: 2168.
Ekin, Z. 2019. Integrated use of humic acid and plant growth promoting rhizobacteria to ensure higher potato productivity in sustainable agriculture. Sustainability. 11: 3417. doi: 10.3390/su11123417.
El-Sherbeny, S. E., S. F. Hendawy, A. A. Youssef, N. Y. Naguib. and M. S. Hussein. 2012. Response of turnip (Brassica rapa) plants to minerals or organic fertilizer treatments. J. Appl. Sci. Res. 8: 628-634.
Fallhai, H. M. and S. Mahmoodi. 2018. Impact of water availability and fertilization management on saffron (Crocus sativus L.) biomass allocation. Horti. Postharvest Res. 1: 131–146.
Faraji mehmani, A., B. Esmaielpour, F. Sefidkon. and S. Khorramdel. 2016. Effects of foliar spraying with salicylic acid and putrescine on growth characteristics and yield of summer savory (Satureja hortensis L.). Iranian J. Field Crops Res. 14: 73-85.
Fricke, W. 2020. Energy costs of salinity tolerance in crop plants: night-time transpiration and growth. New Phytologist. 225: 1152–1165.
García, A. C., L. A. Santos, L. G. Ambrósio de Souza, O. C. H. Tavares, E. Zonta, E. T. M. Gomes, J. M. García-Mina. and R. L. Berbara. 2016. Vermicompost humic acids modulate the accumulation and metabolism of ROS in rice plants. J. Plant Physiol. 192: 56–63.
Ghaderi, N., S. Normohammadi. and T. Javadi. 2015. Morpho-physiological responses of strawberry (Fragaria×ananassa) to exogenous salicylic acid application under drought stress. J. Agri. Sci. Tech. 17: 167-178.
Gholami, M., M. Kafi. and H. R. Khazaei. 2017. Study the relations of sink and source in saffron by means of correlation coefficients under different irrigation and fertilization levels. Saffron Agron. Tech. 5: 195–210.
Gismondi, A., M. Serio, L. Canuti. and A. Canini. 2012. Biochemical, antioxidant and antineoplastic properties of Italian saffron (Crocus sativus L.). Am. J. Plant Sci. 3: 1573–1580.
Golzari Jahan Abadi, M., M. A. Behdani, M. H. Sayyari Zahan. and S. Khorramdel. 2017. Effect of some fertilizer sources and mother corm weight on growth criteria and qualitative traits of saffron (Crocus sativus L.). J. Saffron Res. 4: 172-186.
Golzari, M. 2016. Effect of bio-fertilizer and mother corm weight on growth, flower and stigma yield and qualitative criteria of saffron. M.Sc. Faculty of Agri. Univ. Birjand. Iran. (Abstract in English)
Harati, E., B. Kashefi. and M. Matinizadeh. 2016. Investigation of reducing detrimantal effects of salt stress on morphological and physiological traits of (Thymus daenensis Celak.) through salicylic acid application. Plant Prod. Tech. 16(2): 111-125.
Hashmi, N., M. A. Khan, M. Idrees. and T. Aftab. 2012. Exogenous salicylic acid stimulates physiological and biochemical changes to improve growth, yield and active constituents of fennel essential oil. Plant Growth Regulation, 68: 281-291.
Heidari, M. and S. Khalili. 2014. The effect of humic acid and phosphorus fertilizer on yield and flowers, photosynthetic pigments and amounts of mineral elements in plant roselle (Hisbiscus sabdariffa L.). Iranian J. Field Crops Res. 45: 191-193.
Hernández, J. A. 2019. Salinity tolerance in plants: trends and perspectives. Intl. J. Molecular Sci. 20: 2408. doi: 10.3390/ijms20102408.
Ilyas, N., R. Gull, R. Mazhar, M. Saeed, S. Kanwal, S. Shabir. and F. Bibi. 2017. Influence of salicylic acid and Jasmonic acid on wheat under drought stress. Communications Soil Sci. Plant Analysis. 48: 2715–2723.
Jabbari, M., M. Khayyat, H. R. Fallahi. and A. R. Samadzadeh. 2017. Influence of saffron corm soaking in salicylic acid and potassium nitrate on vegetative and reproductive growth and its chlorophyll fluorescence indices. Saffron Agron. Tech. 5(1): 21-35.
Jalali, N., N. Daneshvar, A. Shahi-Gharahlar, J. A. Teixeira da Silva. and R. Farhoudi. 2010. Response of fescue (Festuca rubra) to salinity sources and levels at seed germination and seedling stage. Seed Sci. Biotech. 4: 33-36.
Ji, C., X. Mao, J. Hao, X. Wang, J. Xue, H. Cui. and R. Li. 2018. Analysis of bZIP transcription factor family and their expressions under salt stress in Chlamydomonas reinhardtii. Intl. J. Molecular Sci. 19: 2800.
Kang, S. M., A. L. Khan, M. Waqas, Y. H. You, J. H. Kim, J. G. Kim, M. Hamayun. and I. J. Lee. 2014. Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J. Plant Interactions. 1: 673–682.
Kanwal, H., M. Ashraf. and M. Shahbaz. 2011. Assessment of salt tolerance of some newly developed and candidate wheat (Triticum aestivum L.)cultivars using gas exchange and chlorophyll fluorescence attributes. Pak. J. Bot. 43: 2693-2699.
Kaya, A. and Z. B. Doganlar. 2016. Exogenous jasmonic acid induces stress tolerance in tobacco (Nicotiana tabacum) exposed to imazapic. Ecotoxicol. Environ. Safety. 124: 470–479.
Kaya, C., M. Şenbayram, N. A. Akram, M. Ashraf, M. N. Alyemeni. and P. Ahmad. 2020. Sulfur-enriched leonardite and humic acid soil amendments enhance tolerance to drought and phosphorus deficiency stress in maize (Zea mays L.). Scientific Reports, 10: 6432. https://doi.org/10.1038/s41598-020-62669-6.
Kiani-Pouya, A. and F. Rasouli. 2014. The potential of leaf chlorophyll content to screen bread-wheat genotypes in saline condition. Photosynthetica. 52: 288-300.
Kovacik, J., B. Klejdus, J. Hedb avny. and M. Backor. 2009. Salicylic acid alleviates NaCl-induced changes in the metabolism of Matricaria chamomilla plants. Ecotoxicology. 18: 544-554.
Kumar, D., D. S. Mishra, B. Chakraborty. and P. Kumar. 2013. Pericarp browning and quality management of litchi fruit by antioxidants and salicylic acid during ambient storage. J. Food Sci. Tech. 50: 797-802.
Li, G., Sh. Wan, J. Zhou, Zh. Yang. and P. Qin. 2009. Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus commonis L.) seedlings to salt stress levels. Industrial Crops and Prod. 31: 13-19.
Luo, J., W. Xia, P. Cao, Z. A. Xiao, Y. Zhang, M. Liu, C. Zhan. and N. Wang. 2019. Integrated transcriptome analysis reveals plant hormones Jasmonic acid and salicylic acid coordinate growth and defense responses upon fungal infection in poplar. Biomolecules. 9: 12.
Manzo, A., S. Panseri, D. Bertoni, A. Giorgi. 2015. Economic and qualitative traits of Italian Alps saffron. J. Mountain Sci. 12: 1542-1550.
Mardani, H. and M. Azizi. 2011. Effects of salicylic acid application on morphological and physiological characteristics of cucumber seedling (Cucumis sativus cv. Super Dominus) under drought Stress. J. Horti. Sci. 25: 320-326.
Mart, I. 2007. Fertilizers, organic fertilizers, plant and agricultural fertilizers. Agro and Food Business Newsletter. 1-5.
Martin-Mex, R. and A. Larqué-Saavedra. 2001. Effect of salicylic acid in clitoria (Clitoria ternatea L.) bioproductivity in Yucatan, México. 28th Annual Meeting. Plant Growth Regulation Soc. Am. Miami Beach Florida. USA. July 1-5.
Mashmoul, M., A. Azlan, N. Mohtarrudin, B. N. M. Yusof. and H. Khazaai. 2017. Saffron extract and crocin reduced biomarkers associated with obesity in rats fed a high-fat diet. Malaysian J. Nutrition. 23: 117–127.
Moallem Banhangi, F., P. Rezvani Moghaddam, G. Asadi. and S. Khorramdel. 2019. Effects of different amounts of corms and planting depths of corms on flower and corm yield of saffron (Crocus sativus L.). Saffron Agron. Tech. 7: 55–67.
Mollafilabi, A. and S. Khorramdel. 2016. Effects of cow manure and foliar spraying on agronomic criteria and yield of saffron (Crocus sativus L.) in a six year old farm. Saffron Agron. Tech. 3: 237-249.
Moravej Aleali, A., R. Amani, H. Shahbazian, F. Namjooyan, S. M. Latifi. and B. Cheraghian. 2019. The effect of hydroalcoholic saffron (Crocus sativus L.) extract on fasting plasma glucose, HbA1c, lipid profile, liver, and renal function tests in patients with type 2 diabetes mellitus: a randomized double-blind clinical trial. Phytotherapy Res. 33: 1648–1657.
Mozafari, A. A., F. Havas. and N. Ghaderi. 2018. Application of iron nanoparticles and salicylic acid in in vitro culture of strawberries (Fragaria × ananassa Duch.) to cope with drought stress. Plant Cell, Tissue and Organ Culture. 132: 511-523.
Nadeem, S. M., M. Ahmad, Z. A. Zahir, A. Javaid. and M. Ashraf. 2014. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotech. Adv. 32: 429–448.
Nadian, H., M. Heydari, M. H. Gharineh. and M. H. Daneshvar. 2013. The effect of different levels of sodium chloride and mycorrhizal colonization on growth and uptake P, K and Na by saffron (Crocus sativus L.). Intl. J. Agron. Plant Prod. 36: 49-59.
Najwa Ramli, F., A. A. Bakar Sajak, F. Abas, Z. A. Mat Daud. and A. Azlan. 2020. Effect of saffron extract and crocin in serum metabolites of induced obesity rats. BioMed Res. Intl. 2020: 1-15.
Pandey, R. and N. Garg. 2017. High effectiveness of Rhizophagus irregularis is linked to superior modulation of antioxidant defense mechanisms in Cajanus cajan (L.) Millsp. genotypes grown under salinity stress. Mycorrhiza, 27: 669– 682.
Parihar, P., S. Singh, R. Singh, V. P. Singh. and S. M. Prasad. 2015. Effect of salinity stress on plants and its tolerance strategies: A review. Environ. Sci. Pollution. 22: 4056–4075.
Peng, J., J. Liu, L. Zhang, J. Luo, H. Dong. and Y. Ma. 2016. Effects of soil salinity on sucrose metabolism in cotton leaves. PLoS One. 11: e0156241.
Porcel, R., R. Aroca, R. Azcon. and J. M. Ruiz-Lozano . 2016. Regulation of cation transporter genes by the Arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution. Mycorrhiza. 26: 673–684.
Rahimi, A. R., A. Rokhzadi, S. Amini. and E. Karami. 2013. Effect of salicylic acid and methyl Jasmonate on growth and secondary metabolites in Cuminum cyminum L. J. Biodiversity Environ. Sci. 3: 140-149.
Rivas San Vicente, M. and J. Plasencia. 2011. Salicylic acid beyond defense: its role in plant growth and development. J. Exp. Bot. 62: 3321-3338.
Satir, O. and S. Berberoglu. 2016. Crop yield prediction under soil salinity using satellite derived vegetation indices. Field Crops Res. 192: 134–143.
Sharma, A., G. P. Singh Sidhu, F. Araniti, A. S. Bali, B. Shahzad, D. K. Tripathi, M. Brestic, M. Skalicky. and M. Landi. 2020. The role of salicylic acid in plants exposed to heavy metals. Molecules. 25: 540. doi: 10.3390/molecules25030540.
Sirhindi, G., M. A. Mir, P. Sharma, S. S. Gill, H. Kaur. and R. Mushtaq. 2015. Modulatory role of jasmonic acid on photosynthetic pigments, antioxidants and stress markers of Glycine max L. under nickel stress. Physiol. Molecular Biol. Plants. 21: 559–565.
Sytar, O., M. Brestic, M. Zivcak, K. Olsovska, M. Kovar, H. B. Shao. and X. L. He. 2017. Applying hyper spectral imaging to explore natural plant diversity towards improving salt stress tolerance. Sci. Total Environ. 578: 90–99.
Tavakkoli, E., P. Rengasamy. and G. K. McDonald. 2011. High concentrations of Na and Cl ions in soil solution have simultaneous detrimental effect on growth of Faba bean under salinity stress. J. Exp. Bot. 61: 4449-4459.
Torbaghan, M. E. and M. M. Ahmadi. 2011. The effect of salt stress on flower yield and growth parameters of saffron (Crocus sativus L.) in greenhouse condition. Intl. Res. J. Agri. Sci. Soil Sci. 1: 421-427.
Wei, Y., G. Liu, Y. Chang, C. He. and H. Shi. 2018. Heat shock transcription factor 3 regulates plant immune response through modulation of salicylic acid accumulation and signalling in cassava. Molecular Plant Pathol. 19: 2209–2220.
Yigider, E., M. S. Taspinar, B. Sigmaz, M. Aydin. and G. Agar. 2016. Humic acids protective activity against manganese induced LTR (long terminal repeat) retrotransposon polymorphism and genomic instability effects in Zea mays. Plant Gene. 6: 13–7.
Zhang, Y. and X. Li. 2019. Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Current Opinion in Plant Biol. 50: 29–36.
Zhu, X., F. Song, S. Liu. and F. Liu. 2016. Role of Arbuscular mycorrhiza in alleviating salinity stress in wheat (Triticum aestivum L.) grown under ambient and elevated CO2. J. Agron. Crop Sci. 202: 486–496.