Phytochemical Responses of White Savory (Satureja mutica Fisch and C.A.Mey.) to Foliar Application of Seaweed Extract and Ecormon Fertilizer
Subject Areas : Journal of Crop Nutrition ScienceSaeid Reza Poursakhi 1 , Hossein Ali Asadi-Gharneh 2 *
1 - MSc. Graduated, Department of Horticulture, Faculty of Agriculture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
2 - Assistant Professor, Department of Horticulture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
Keywords: carotenoids, Biofertilizers, <i>Antioxidant activity, Phenolic compounds</i>,
Abstract :
BACKGROUND: Sustainable agriculture is a great solution to reduce chemical pollutants to overcome environmental pollution. OBJECTIVES: Considering the importance of the savory and the consequences of fertilizers application, current study was carried out to determine the optimum concentration of seaweed extract and Ecormon fertilizer -as an organic matter and growth promoting stimulus- on some biochemical characteristics of white savory. METHODS: The present study was conducted as a factorial experiment in a randomized complete blocks design including three concentrations of seaweed extract (0, 1.5, and 3/1000) and three concentrations of Ecormon fertilizer (0, 0.5 and 1/1000) in three replications to study the biochemical properties of white savory. RESULT: According to the results, the highest chlorophyll a, b, total chlorophyll and carotenoid levels were observed in the treatment of Ecormon1 (2.65, 2.31, 4.95 and 2.88 mg.g-1 respectively), whereas Seaweed 1.5 had the lowest pigments amounts. The highest amount of phenolic compounds (804.00 mg.g-1) was obtained from seaweed 3 plus Ecormon 1, while the lowest amounts were belonging to seaweed 1.5 plus Ecormon1 and seaweed 3 plus Ecormon 0.5 (247.40 and 248.30 mg.g-1), respectively. The highest amounts of antioxidant activity were observed in treatments of seaweed 3 plus Ecormon1 and Ecormon 0.5 (46.25 and 45.26 %, respectively) and the lowest value (25.87 %) was observed in control treatment. CONCLUSION: In general, application of Ecormon and seaweed extract showed a positive effect on photosynthetic pigments, phenolic compounds and antioxidant activity of white savory. So, it can be recommended to farmers as efficient bio-elicitors that improve the biochemical properties of the plant through induction of the immune system.
Amoudi, O. A. H., H. A. Mutawie, A. V. Patel. and G. Blunden. 2009. Chemical composition and antioxidant activities of Jeddah corniche algae, Saudi Arabia. Saudi J. Biol. Sci. 16: 23-29.
Asghari, J., S. M. Ehteshami, S. M. Rajabi Darvishan. and K. Khavazi. 2014. Study of root inoculation with plant growth promoting bacteria and spraying with their metabolites on chlorophyll content, nutrients uptake and yield in rice. J. Soil Biol. 2: 21-31.
Calabi-Floody, M., J. Medina, R. Cornelia, L. M. Condron, M. Hernandez, M. Dumont. and M. L. Mora. 2017. Smart fertilizers as a strategy for sustainable agriculture. Adv. Agron. 10: 1-39.
Cook, J., J. Zhang, J. Norrie, B. Blal. and Z. Cheng. 2018. Seaweed extract (Stella Maris®) activates innate immune responses in Arabidopsis thaliana and protects host against bacterial pathogens. Mar Drugs. 16: E221.
Delshadi, S., M. Ebrahimi. and E. Shirmohammadi. 2017. Plant growth promoting bacteria effects on growth, photosynthetic pigments and root nutrients uptake of Avena sativa L. under drought stress. Desert. 22-1: 107-116.
Dixon, M. W. 2018. Chemical fertilizer in transformations in world agriculture and the state system, 1870 to interwar period. J. Agrar. Chang. 18: 768-786.
El-Nemr, M. A., M. El-Desuki, A. M. El-Bassiony. and Z. F. Fawzy.2012. Response of growth and yield of cucumber plants (Cucumis sativus L.) to different foliar applications of humic acid and bio-stimulators. Aust. J. Basic Appl. Sci. 6(3): 630-637.
Ghorbanpour, M., J. Hadian, M. Hatami, H. Salehi-Arjomand. and A. Aliahmadi. 2016. Comparison of chemical compounds and antioxidant and antibacterial properties of various Satureja species growing wild in Iran. J. Med. Plant. 15(59): 58-72.
Hendawy, S. F., A. E. Azza, E. Aziz. and E. A. Omer. 2010. Productivity and oil quality of Thymus vulgaris L. under organic fertilization conditions. Ozean J. Appl. Sci. 3(2): 203-216.
Heng, Y., C. Xavier, F. Lars, P. Christensen. and G. Kai. 2012. Chitosan oligosaccharides promote the content of polyphenols in greek oregano (Origanum vulgare ssp. hirtum). J. Agric. Food Chem. 60: 136-143.
Horincar, V., G. Parfene. and G. Bahrim. 2011. Evaluation of bioactive compounds in extracts obtained from three Romanian marine algae species. Rom. Biotechnol. Lett. 6: 71-78.
Ionkova, I. 2007. Biotechnological approaches for the production of lignans. Pharmacogn Rev. 1: 427-438.
Ji, S. H., J. S. Kim, C. H. Lee, H. S. Seo, S. C. Chun, J. Oh, E. H. Choi. and. G. Park. 2019. Enhancement of vitality and activity of a plant growth-promoting bacteria (PGPB) by atmospheric pressure non-thermal plasma. Sci. Rep. 9(1044): 1-16.
Khajeh, H. and S. Naderi. 2014. The effect of chitosan on some antioxidant enzyme activity and biochemical traits of Melissa. J. Crop Sci. 1: 100-116.
Li, G., S. H. Wan, J. Zhou, Z. H. Yang. and P. Qin. 2009. Leaf chlorophyll fluorescence, hyper spectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus commonis L.) seedlings to salt stress levels. Ind Crops Prod. 31: 13-19.
Niknejhad, Y. and H. Pirdashti. 2012. Effect of growth stimulators on yield and yield components of rice (Oryza sativa L.) ratoon. Intl. Res. J. Appl. Basic Sci. 3(7): 1417-1421.
Pise, N. M. and A. B. Sabale. 2010. Effect of seaweed concentrates on the growth and biochemical constituents of Trigonella foenum-graecum L. J. Phytol. 2(4): 50-56.
Pisoschi, A. M. and G. P. Negulescu. 2011. Methods for Total Antioxidant Activity Determination: A Review. Biochem Anal Biochem. 1(106): 1-10.
Salehi-Arjmand, H., D. Mazaheri, J. Hadian, N. Majnoon Hosseini. and M. Ghorbanpour. 2014. Essential oils composition, antioxidant activities and phenolic content of wild and cultivated Satureja bachtiarica Bunge plants of Yazd origin. J. Med. Plants. 13(51): 6-14.
Santos, V. M., G. Castro, S. O. Lima. and D. P. Cardoso. 2014. Effect of biostimulants and sowing depth on the emergence of seedlings and initial growth of the Guarani cultivar of castor beans. Appl. Res. Agrotec. 7(2): 25-32.
Selvam, G. G. and K. Sivakumar. 2013. Effect of foliar spray from seaweed liquid fertilizer of Ulva reticulata (Forsk.) on Vigna mungo L. and their elemental composition using SEM–energy dispersive spectroscopic analysis. Asian Pac. J. Reprod. 2(2): 119-125.
Shahbazi, F., F. Seyyednejad, M. Salimi. and A. Gilani. 2015. Effect of seaweed extracts on the growth and biochemical constituents of wheat. Intl. J Agri. Crop Sci. 8(3): 283-287.
Slinkard, K. and V. L. Singleton. 1977. Total phenol analysis; automation and comparison with manual methods. Am. J. Enol. Viticult. 28: 49-55.
Thambiraj, J., K. Lingakumar. and S. Paulsamy. 2012. Effect of seaweed liquid fertilizer prepared from Sargassum wightii and Hypnea musciformis on the growth and biochemical constituents of the pulse, Cyamopsis tetragonoloba (L.). J. Agric. Res. 1: 65-70.
Tozlu, E., A. Cakir, S. Kordali, G. Tozlu, H. Ozer. and T. A. Akcin. 2011. Chemical compositions and insecticidal effects of essential oils isolated from Achillea gypsicola, Satureja hortensis, Origanum acutidens and Hypericum scabrum against broadbean weevil. Sci. Hortic. (1): 9-17.
Yen, M. T., J. H. Yangand. and J. L. Mau. 2008. Antioxidant properties of chitosan from crab shells. Carbohydr. Polym. 74: 840-844.
Zamani, S., S. Khorasaninejad. and B. Kashefi. 2013. The importance role of seaweeds of some characters of plant. Intl. J. Agri. Crop Sci. 5(16): 1789-1793.
Zancan, S., I. Suglia, N. La Rocca. and R. Ghisi. 2008. Effects of UV-B radiation on antioxidant parameters of iron deficient barley plants. Environ. Exp. Bot. 63: 71-79.
Zhang, Y., M. R. Mian. and J. H. Bouton. 2006. Recent molecular and genomic studies on stress tolerance of forage and turf grasses: Crop Sci. 46: 497–511.