Assessment Effect of Silicon on Physiological and Biochemical Traits of Corn (Zea mays L.) Under Salinity Stress Conditions
Subject Areas : Journal of Crop Nutrition ScienceAfsaneh Bolbol Sharifloo 1 , Mojtaba Yousefi Rad 2
1 - Department of Agronomy, Saveh Branch, Islamic Azad University, Saveh, Iran.
2 - Department of Agronomy, Faculty of Agriculture, Saveh Branch, Islamic Azad University, Saveh, Iran.
Keywords: Malondialdehyde, Potassium, <i>Leaf dry weight, Proline</i>,
Abstract :
BACKGROUND: Silicon is a suitable solution to alleviate salinity stress and improve crop production. OBJECTIVES: Investigation physiological and biochemical traits of Single Cross 704 corn affected foliar application of silicon (from a Sodium silicate source) under salinity stress. METHODS: This research was carried out according split plot experiment based on randomized complete blocks design with three replications. The main factor included salinity at three level (a1: control or 0.34 ds.m-1, a2: 4 ds.m-1, a3: 8 ds.m-1) and foliar application of silicon (from a Sodium silicate source) belonged to subplot at three level (b1: control or non-spraying, b2: 1 mM b3: 2 mM silicon). RESULT: Salinity stress reduced leaf dry weight, plant dry weight, root dry weight, and decreased stem height. It also increased levels of malondialdehyde (MDA), proline and sodium, and reduced potassium concentration in the plant. Foliar application of Silicon improved the growth traits, such that foliar application of 2 mM silicon brought about the highest dry weight of leaves and plants (21.73 and 120.85 gr). Foliar application of 1 and 2 mM silicone reduced MDA concentration by 12.93% and 13.7% at 8 ds.m-1 salinity compared to the control. The foliar application of silicon (1 and 2 mM) also led to 13.78 and 17.79% reduction in amount of proline at control salinity level and 28.51% and 21.08% reduction of proline levels at 8 ds.m-1 salinity levels compared to the control. Application of 1 and 2 mM silicon led to reduction of the leaf sodium concentration and increased Leaf potassium concentration at all salinity levels compared to the control. So the consumption of silicon reduced the effects of salt stress on corn. CONCLUSION: Finally according result of this research foliar application of silicone in amount of 2 mM can be recommended.
Adatia, M. H. and R. T. Beasford. 1986. The effects of silicon on cucumber plants grown in recirculating nutrient solution. Annual Review of Plant Biol. 58: 343-351.
Amirjani, M. R. 2010. Effects of salinity stress on growth, mineral composition, proline content, antioxidant enzymes of soybean. Am. J. Physiol. 5(6): 350-360.
Anburaj, R., M. A. Nabeel, T. Sivakumar. and K. Kathiresen. 2012. The role of rhizobacteria in salinity effects on biochemical constituents of the halophyte Sesuvium portulacastrum. Russ J. Plant Physiol. 59(1): 115-119.
Ashraf, M. and P. J. C. Harris. 2005. Abiotic Stresses: Plant resistance through breeding and molecular approaches. Haworth Press. New York.
Ashraf, M. and M. R. Foolad. 2007. Roles of glycine betaine and proline in improving plant abiotic stress. Environ. Exp. Bot. 59(2): 206-216.
Asgharipour, M. R. and H. Mosapour. 2016. A foliar application silicon enhances drought tolerance in fennel. J. Animal Plant Sci. 26(4): 1056-1062.
Athar, H. R. and M. Ashraf. 2009. Strategies for crop improvement against salt and water stress: an overview. In: Ashraf, M., M. Ozturk. and H. R. Athar. Salinity and water stress: Improving crop efficiency. Eds. pp. 1-16. Springer. Dordrecht. Netherlands.
Bandeoglu, E., F. Eyidogan, M. Yucel. and H. A. Oktem. 2004. Antioxidant response of shoots and roots of lentil to NaCl salinity stress. Plant Growth Regulation. 42(1):69-77.
Bates, L. S., R. P. Waldern. and I. D. Teave. 1973. Rapid determination of free proline for water stress studies. Plant and Soil. 39: 205-207.
Biel, K. Y., V. V. Matichenkov. and I. R. Fomina. 2008. Protective role of silicon in living systems. pp: 167-198. In: D. M. Martirosyan (Ed.). Functional foods for Chronic. D and A Inc. Richardson Press. Dallas. Texas. USA.
Bray, E. A., J. Bailey-Serres. and E. Weretilnyk. 2000. Responses to abiotic stress. In: Buchanan, B. B., W. Gruissem. and R. Jones. Bio-Chem. Mol. Biol. Plants. Eds. pp. 1158-1203. Am. Soc. Plant Physiol. Maryland. USA.
Carillo, P., G. Mastrolonardo, F. Nacca, D. Parisi, A. Verlotta. and A. Fuggi. 2008. Nitrogen metabolism in durum wheat under salinity: accumulation of proline and glycine betaine. Functional Plant Biol. 35(5): 412-426.
De-Lacerda, C. F., J. Cambraia, M. A. Oliva, H. A. Ruiz. and J. T. Prisco. 2003. Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt. Environ. Exp. Bot. 49(2): 107-120.
De-Vos, C. H., M. Schat, R. De Waal. and W. Vooijs Ernst. 1991. Increased to copper-induced damage of the root plasma membrane in copper tolerant Silene cucubalus, Plant Physiol. 82: 523-528.
Emadi, M. 2011. Effect of foliar application of polyamines and some essential nutrients on qualitative and quantitative characteristics of different varieties of wheat in Ahvaz. Msc. Thesis. Chamran Univ. (Abstract in English)
Epstein, E. 1999. Silicon. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 641-664.
Gong, H., K. Chen, G. Chen, S. Wang. and C. Zhang. 2003. Effects of silicon on growth of wheat under drought. J. Plant Nutr. 26(5): 1055-1063.
Gideon, O. O., O. A. Richard. and A. A. Adekunle. 2016. Proline and soluble sugars accumulation in three pepper species in response to water stress imposed at different stages of growth. Sci. Cold Arid Reg. J. 8(3): 205-211.
Gunes, A., A. Inal, M. Alpuslan, F. Fraslan, E. Guneri. and N. Cicek. 2007. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in corn grown under salinity. J. Plant Physiol. 164(6): 728-736.
Hajiboland, R. and L. Cheraghvareh. 2014. Influence of Si supplementation on growth and some physiological and biochemical parameters in salt-stressed tobacco plants. J. Sci. 25(3): 205-217.
Hasanuzzaman, M., K. Nahar. and M. Fujita. 2013. Plant response to salt stress and role of exogenous protectants to mitigate salt induced damages. In: Ahmad, P., M. M. Azooz. and M. N. V. Prasad. Eco-physiology and responses of plants under salt stress. Eds. pp: 25-87. Springer. New York. NY. USA.
Hattori, T., S. Inanaga, P. S. An, H. P. Araki, S. Morita, M. Luxová. and A. Lux. 2005. Application of silicon enhanced drought tolerance in Sorghum. Physiol. Plant. 123(4): 459-466.
Hayat, S., Q. Hayat, M. N. Alyemeni, A. S. Wani, J. Pichtel. and A. Ahmad. 2012. Role of proline under changing environments: A review. Plant Signaling and Behavior. 7(11): 1-11.
Kardoni, F., S. J. S. Mosavi, S. Parande. and M. Eskandari Torbaghan. 2013. Effect of salinity stress and silicon application on yield and component yield of faba bean. Intl. J. Agri. Crop Sci. 6(12): 814-818.
Karmollachaab, A., M. H. Gharineg, M. Bakhshandeh, M. Moradi. and Gh. Fathi. 2014. Effect of silicon application on physiological characteristic and growth of wheat under drought stress. Agro-Ecol. J. 5(4): 430-442.
Lee, S. K., E. Y. Sohn, M. Hamayun, J. Y. Yoon. and I. J. Lee. 2010. Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agro-For. Syst. 80(3): 333-340.
Liang, Y. 1999. Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil. 209: 217-224.
Liang, Y., Q. Chen, Q. Liu, W. Zhang. and R. Ding. 2003. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt stressed barely (Hordeum vulgar L.). J. Plant Physiol. 160(10): 1157-1164.
Liang, Y. C., W. H. Zhang, Q. Chen, Y. L. Liu. and R. X. Ding. 2006. Effect of exogenous silicon (Si) on H+-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley (Hordeum vulgare L.). Environ. Exp. Bot. 57: 212-219.
Ma, J. F. and F. Takahashi. 1990. Effect of silicic acid on phosphorus uptake by rice plant. J. Soil. Sci. Plant. Nutr. 35: 227-234.
Marschner, H. 1995. Mineral nutrition of higher plants. 2nd Ed. Academic Press Ltd. London. UK. pp: 7-78.
Mera, M. U. and T. J. Beveridge. 1993. Mechanism of silicate binding to the bacterial cell wall in Bacillus subtilis. J. Bacteriol. 175 (7): 1936-1945.
Miao, B. H., X. G. Han. and W. H. Zhang. 2010. Ameliorative effect of silicon on soybean seedlings grown in potassium deficient medium. Annals of Bot. 105: 967-973.
Mohammadizad, H. A., G. Mirzakhani, M. Ghafari, P. Samavatipour, S. M. Araghi. and M. F. Fatehi. 2014. Effect of NaCl stress on seed germination indices and early seedling growth of Cumin (Cuminum cyminum L.) an important medicinal plant. Agri. Sci. Develop. 3(2): 161-166.
Moradi, F. and M. I. Abdelbagi. 2007. Response of photosynthesis, chlorophyll Fluorescence and ROS- scavenging systems to salt stress during seedling and reproductive stages in rice. Annals Bot. pp: 1-13.
Munns, R. and R. A. James. 2003. Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant and Soil. 253(1): 201-218.
Nayyar, H. and D. P. Walia. 2003. Water stress induced proline accumulation in contrasting wheat genotypes as affected by calcium and abscisic acid. Biological Plantarum. 46(2): 275-279.
Patade, V. Y., V. H. Lokhande. and P. Suprasanna. 2014. Exogenous application of proline alleviates salt induced oxidative stress more efficiently than glycine betaine in sugarcane cultured cells. Sugar Tech. J. 16(1): 22-29.
Patel, P. R., S. S. Kajal, V. R. Patel, V. J. Patel. and S. M. Khristi. 2010. Impact of salt stress on nutrient uptake and growth of cowpea. Brazilian J. Plant Physiol. 22: 43-48.
Pei, Z. F., D. F. Ming, D. Liu, G. L. Wan, X. X. Geng, H. J. Gong. and W. J. Zhou. 2010. Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedling. J. Plant Growth Regulation. 29: 106-115.
Remus-Borel, W., J. G. Menzies. and R. R. Belanger. 2005. Silicon induces antifungal compounds in powdery mildew-infected wheat. Physiol. Mol. Plant Pathol. J. 66(3): 108-115.
Safarnejhad, A., V. A. Sadr. and H. Hamidi. 2007. The effect of salinity on morphological properties of Nigella sativa. J. Plant Breed. Genetics Res. Iran. 15(1): 75-84. (Abstract in English)
Samuels, A. L., A. D. Glass, M. D. L. Ehret. and J. G. Menzies. 1993. The effects of silicon supplementation on cucumber fruit: Changes in surface characteristics. Ann. Bot. 72: 433-440.
Sapre, S. S. and D. N. Vakharia. 2017. Silicon induced physiological and biochemical changes under polyethylene glycol-6000 water deficit stress in wheat seedlings. J. Environ. Biol.38(2): 313-8.
Silva, O. N., A. K. Lobato, F. W. Avila, L. Costa, F. Oliveira, B. G. Santos, A. P. Martins, R. Lemos, J. Pinho, M. B. Medeiros, M. Cardoso. and I. P. Andrade. 2012. Silicon-induced increase in chlorophyll is modulated by the leaf water potential in two water deficient tomato cultivars. Plant Soil Environ. J. 58: 481-486.
Shen, X., Y. Zhou, L. Duan, Z. Li, A. E. Eneji. and J. Li. 2010. Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. J. Plant Physiol. 167(15): 1248-1252.
Shi, X., C. Zhang, H. Wang. and F. Zhang. 2005. Effect of Si on the distribution of Cd in rice seedlings. Plant Soil. J. 272(1-2): 53-60.
Szabados, L. and A. Savoure. 2010. Proline: A multifunctional amino acid. Trends in Plant Sci. 15(2): 89-97.
Tahir, M. A., T. Rahmatullah, M. Aziz, A. S. Kanwal. and M. A. Maqsood. 2006. Beneficial effects of Silicon in wheat (Triticum aestivum L.) under salinity stress. Pakistan J. Bot. 38(5): 1715-2271.
Tandon, H. L. S. 1995. Methods of analysis of soils, plants, waters and fertilizers. Fertilizer development and consultation organization. 204-204A Bhanot corner. 1-2 Pamposh Enclave. New Delhi-110048. pp. 19-23.
Tarchoune, I., E. Degl’Innocenti, R. Kaddour, L. Guidi, M. Lachaal, F. Navari-Izzo. and Z. Ouerghi. 2012. Effects of NaCl or Na2SO4 salinity on plant growth, ion content and photosynthetic activity in Ocimum basilicum L. Acta Physiol Plant. 34(2): 607-611.
Tuna, A. L., C. Kaya, D. Higgs, B. Murillo-Amador, S. Aydemir. and A. R. Girgin. 2008. Silicon improves salinity tolerance in wheat plants. Environ. Exp. Bot. 62(1): 10-16.
Qadir, M., E. Quillerou. and V. Nangia. 2014. Economics of salt-induced land degradation and restoration. J. Natur. Res. For. 38: 282-295.
Yarnia, M. and M. B. Khorshidi Benam. 2017. Assessment of antioxidant activity, grain and oil production of Amaranth (Amaranthus retroflexus L.) in saline conditions. J. Crop. Nutr. Sci. 3(2): 51-64.
Yin, L., S. Wang, J. Li, K. Tanaka. and M. Oka. 2013. Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor. Acta Physiol. Plant. 35: 3099-3107.