Evaluation of Serum Levels of Adiponectin, Vitamin D3, Zonulin, and Irisin in Non-Alcoholic Fatty Liver Disease: A Case-Control Study from Nasiriyah Province, Iraq
Rawaa Abdulmutalib
1
(
Department of Chemistry, College of Science, University of Thi-Qar, Iraq
)
Raed Fanoukh Aboqader Al-Aouadi
2
(
Department of Internal Medicine, College of Medicine Al-Ayen Iraqi University, AUIQ, An Nasiriyah, Iraq
)
Keywords: Non-alcoholic fatty liver disease (NAFLD), Adiponectin, Vitamin D, Zonulin, Irisin, Insulin resistance, Liver function markers,
Abstract :
Non-alcoholic fatty liver disease is increasingly recognized as a widespread metabolic abnormality and a leading contributor to insulin resistance. Adiponectin, an adipose tissue-specific adipokine, plays a crucial role in metabolic regulation. Zonulin, a liver-secreted protein, modulates intestinal permeability, while irisin, a hormone produced by skeletal muscle and adipocytes, is implicated in energy homeostasis. This study aimed to evaluate serum levels of vitamin D3, zonulin, irisin, and adiponectin in patients with NAFLD to elucidate their roles in disease pathogenesis and compare findings with a healthy control group. A total of 44 patients with a confirmed diagnosis of NAFLD and 44 apparently healthy controls were recruited. Blood Samples (5 mL) were obtained, and the serum was isolated via centrifugation, then preserved at −80°C for subsequent analysis. Serum levels of irisin, zonulin, vitamin D3, and adiponectin were measured using the ELISA technique: Adiponectin ELISA Kit (Elabscience, USA) and Vitamin D Kit (Sigma-Aldrich, USA). Liver function markers, including ALT and AST, were assessed using photometric methods (ALT and AST kits, LINEAR, Spain). Findings revealed a marked decrease in circulating levels of vitamin D3 in NAFLD patients (13.32±2.90 m m-1) compared to controls (28.14±4.71 m m-1) (P < 0.05). Conversely, serum levels of adiponectin, irisin, and zonulin were significantly elevated in NAFLD patients (3.12±1.22 m m-1, 387±77.43 m m-1, 66.42±4.78 m m-1, respectively) compared to controls (1.40±0.91 µg mL-1; 74.34±14.11 ng mL-1; 55.66±5.61 m m-1, respectively) (P < 0.05). Additionally, serum ALP levels were significantly higher in NAFLD patients (40±3.28 U L-1) than in controls (32.88±2.56 U L-1) (P < 0.05). These findings suggest that adiponectin, vitamin D3, irisin, and zonulin may play critical roles in NAFLD pathogenesis. Alterations in their serum levels could play a key role in unraveling disease mechanisms and facilitating the development of targeted therapies.
1. Nazer M.R., Abbaszadeh S., Anbari K., Shams M., 2019. A review of the most important medicinal herbs affecting giardiasis. J Herbmed Pharmacol. 8(2), 78–84.
2. Powell E.E., Wong V.W.S., Rinella M., 2021. Non-alcoholic fatty liver disease. Lancet. 397(10), 2212–24.
3. Neuschwander-Tetri B.A., 2018. Non-alcoholic fatty liver disease. BMC Med. 15, 1–6.
4. Sattar N., Forrest E., Preiss D., 2014. Non-alcoholic fatty liver disease. BMJ. 349, 6575.
5. Smith B.W., Adams L.A., 2011. Non-alcoholic fatty liver disease. Critical Rev Clin Lab Sci. 48(3), 97–113.
6. Fasano A., 2012. Zonulin, regulation of tight junctions, and autoimmune diseases. Annals New York Acad Sci. 1258(1), 25–33.
7. Fasano A., 2012. Intestinal permeability and its regulation by zonulin: diagnostic and therapeutic implications. Clin Gastroenterol Hepatol. 10(10), 1096–100.
8. Caviglia G.P., Rosso C., Ribaldone D.G., 2019. Physiopathology of intestinal barrier and the role of zonulin. Minerva Biotecnol. 31(3), 83–92.
9. Polyzos S.A., Anastasilakis A.D., Efstathiadou Z.A., 2018. Irisin in metabolic diseases. Endoc. 59, 260–74.
10. Perakakis N., Triantafyllou G.A., Fernández-Real J.M., 2017. Physiology and role of irisin in glucose homeostasis. Nat Rev Endocrinol. 13(6), 324–37.
11. Novelle M.G., Contreras C., Romero-Picó A., 2013. Irisin, two years later. Int J Endocrinol. 12(3), 746281.
12. Timmons J.A., Baar K., Davidsen P.K., Atherton P.J., 2012. Is irisin a human exercise gene? Nat. 488(74), 9-10.
13. Heaney R.P., Horst R.L., Cullen D.M., Armas L.A., 2009. Vitamin D3 distribution and status in the body. Journal of the American College of Nutrition. 28(3), 252–6.
14. Nair R., Maseeh A., 2012. Vitamin D: The “sunshine” vitamin. J Pharmacol Pharmacother. 3(2), 118–26.
15. Lips P., 2006. Vitamin D physiology. Prog Biophys Mol Biol. 92(1), 4–8.
16. Di Rosa M., Malaguarnera M., Nicoletti F., Malaguarnera L., 2011. Vitamin D3: a helpful immuno-modulator. Immunol. 134(2), 123–39.
17. Barchetta I., Angelico F., Del Ben M., Baroni M.G., Pozzilli P., Morini S., 2011. Strong association between non-alcoholic fatty liver disease (NAFLD) and low 25(OH) vitamin D levels in an adult population with normal serum liver enzymes. BMC Med. 9, 1–7.
18. Palacios-González B., 2015. Irisin levels before and after physical activity among school-age children with different BMI: A direct relation with leptin. Obes. 23(4), 729–32.
19. Hu J., Ke Y., Wu F., Liu S., Ji C., Zhu X., 2020. Circulating irisin levels in patients with nonalcoholic fatty liver disease: A systematic review and meta-analysis. Gastroenterol Res Pract. 2020, 746281.
20. Wang Y.D., Wu L.L., Qi X.Y., Wang Y.Y., Liao Z.Z., Liu J.H., Xiao X.H., 2022. New insight of obesity-associated NAFLD: Dysregulated “crosstalk” between multi-organ and the liver? Genes Dis. 10(3), 799–812. doi:10.1016/j.gendis.2021.12.013.
21. Olivieri F., Maguolo A., Corradi M., Zusi C., Huber V., Fornari E., 2022. Serum zonulin as an index of glucose dysregulation in children and adolescents with overweight and obesity. Pediat Obes. 17(10), 12946.
22. Fasano A., 2020. All disease begins in the (leaky) gut: role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases. Res. 9, 1063-1064.
23. Sharma P., Arora A., 2020. Clinical presentation of alcoholic liver disease and non-alcoholic fatty liver disease: spectrum and diagnosis. Translational Gastroenterol Hepatol. 5(5), 28.
24. Kang Y., Park S., Kim S., Koh H., 2018. Normal serum alanine aminotransferase and non-alcoholic fatty liver disease among Korean adolescents: a cross-sectional study using data from KNHANES 2010–2015. BMC Pediatr. 18(1), 215. doi: 10.1186/s12887-018-1202-z.
25. Martin-Rodriguez J.L., Gonzalez-Cantero J., Gonzalez-Cantero A., 2017. Diagnostic accuracy of serum alanine aminotransferase as a biomarker for nonalcoholic fatty liver disease and insulin resistance in healthy subjects using 3T MR spectroscopy. Med. 96(17), 6770.
26. Isaksen V.T., Larsen M.A., Goll R., Florholmen J.R., Paulssen E.J., 2016. Hepatic steatosis, detected by hepatorenal index in ultrasonography, as a predictor of insulin resistance in obese subjects. BMC Obes. 20(3), 39.
27. Jwarchan B., Lalchan S., Dhakal A., Acharya R.R., 2020. Comparison of liver enzymes and sonological grading in nonalcoholic fatty liver. Asian J Med Sci. 11(2), 2.
28. Kadowaki T., Yamauchi T., 2005. Adiponectin and adiponectin receptors. Endoc Rev. 26(3), 439–51.
29. Shabalala S.C., Dludla P.V., Mabasa L., Kappo A.P., Basson A.K., Pheiffer C., Johnson R., 2020. The effect of adiponectin in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) and the potential role of polyphenols in the modulation of adiponectin signaling. Biomed Pharmacother. 131, 110785. doi: 10.1016/j.biopha.2020.110785.
30. Polyzos S.A., Kountouras J., Zavos C., Tsiaousi E., 2010. The role of adiponectin in the pathogenesis and treatment of non-alcoholic fatty liver disease. Diabetes, Obes Metab. 12(5), 365–83.
31. Rosso C., Caviglia G.P., Younes R., 2020. Circulating zonulin is related to hepatic necroinflammation in patients with non-alcoholic fatty liver disease. Clin Lab. 66(4), 705–8.
32. Baratova M.S., Ulashov I.A., Yakhshieva Z., Egamberdiev A.A., Хoshimov B., Kodirov U.A., Eshmuratov A.A., Avilova K.X., Mamadoliev I.I., Normurodov D., 2025. Protective effects of 1, 8-cineole (eucalyptol) against CCl4-induced hepatic oxidative damage in rats. Caspian J Environ Sci. 1-9. doi: 10.22124/cjes.2025.8607.
33. Sanoeva M.J., Ibragimov I., Akhmadaliyev S.S., Nurullaeva B., Muzaffarova N.S., Islomov S.T., Abubakir T., Qosimov J.A., Sapaev B., 2025. Ameliorative effect of Vitamin D on CPF toxicity by evaluation of Wistar rat liver enzymes and kidney biomarkers. Caspian J Environ Sci. 1-12. doi: 10.22124/cjes.2025.8571.
34. Mosavat, S.H., Ghayour Razmgah, G.R., Hosseini, S. M.R., Nematy, M., Esmaily, H., Yousefi, M., Kamalinejad, M., 2017. Efficacy of Traditional Persian Medicine-Based Diet on Non-Alcoholic Fatty Liver Disease: A Randomized, Controlled, Clinical Trial. Galen Med J. 6(3), 813. https://doi. org/10. 31661/gmj.v6i3.813
35. Farhadi M., Mortazavi P., Motesaddi Zarandi S., Eidi A., 2023. Effects of the air pollution on the decreased P53, Nrf2 and HO-1 protein levels along with tissue damage caused by oxidative stress in the lung of rat as an animal model. Caspian J Environ Sci.1-8. doi: 10.22124/cjes.2023.6825.
36. Ebrahimi Y., AL-Baghdady H.F.A., Hameed N.M., Iswanto A.H., Shnain Ali M., Hammoodi H.A., Hashim Kzar H., Aravindhan S., Khodaei S.M., Alikord, M., Pirhadi M., 2022. Common fatty acids and polyphenols in olive oil and its benefits to heart and human health. Caspian J Environ Sci. 1-7. doi: 10.22124/cjes.2022.5976
37. Mirhafez S.R., Avan A., Pasdar A., Khatamianfar S., Hosseinzadeh L., Ganjali S., 2016. Zinc Finger 259 Gene Polymorphism rs964184 is Associated with Serum Triglyceride Levels and Metabolic Syndrome. Int J Mol Cell Med. 5(1), 8-18.