Study of Antibiotic Resistance and Biofilm Formation of Staphylococci Isolated from Dental Department Liquid Effluents
Zineb Haouari
1
(
Faculty of Medicine, TALEB Mourad, Djillali Liabes University, 22000, Sidi Bel Abbes, Algeria
)
Chafik Mhamdia
2
(
Faculty of Nature and Life Sciences, Djillali Liabes University, 22000, Sidi Bel Abbes, Algeria
)
Ahmed Reda Belmamoun
3
(
Faculty of Nature and Life Sciences, Djillali Liabes University, 22000, Sidi Bel Abbes, Algeria
)
Salheddine Khaldi
4
(
Proximity Public Health Establishment, Chellala, El bayadh, 32000, Algeria
)
Abdelkader Ammam
5
(
Moulay Tahar University, 20000, Saida, Algeria
)
Imene Berrabeh
6
(
University Hospital Center, 22000, Sidi Bel Abbes, Algeria
)
Wissam Khelifi
7
(
Faculty of Nature and Life Sciences, Djillali Liabes University, 22000, Sidi Bel Abbes, Algeria
)
Khadidja Laril
8
(
University Hospital Center, 22000, Sidi Bel Abbes, Algeria
)
Keywords: Staphylococcus capitis, Staphylococcus warneri, Antibiotic resistance, Biofilm ,
Abstract :
Staphylococcus sp. are pathogenic bacteria commonly found in clinical environments, including dental clinics. Their pathogenic potential derives from their ability to express various virulence factors. Our study was conducted to investigate the prevalence of antibiotic resistance and biofilm formation by strains of Staphylococcus isolated from the liquid effluent of two (02) dental practices in Sidi Bel Abbés, Algeria. Seven strains (07) were purified from three (03) oral rinse samples collected. Three (03/07) were positive on Chapman agar, with positive catalase, confirming their belonging to the Staphylococcus genus. Biochemical gallery identification revealed three different biotypes: 4104100: Staphylococcus capitis, 6310111: Staphylococcus warneri, 6104100: Staphylococcus capitis, using the API STAPH system. All strains tested positive for free coagulase in tubes and bound coagulase, which the Staphytect Plus latex agglutination test confirmed. In addition, our strains showed positive DNase activity. The isolated strains were multi-resistant to antibiotics, with antibiotic susceptibility tests revealing total resistance (100%) to the following antibiotics: penicillin, oxacillin, cephalotin and nalidixic acid. The 03 strains also showed morphological characteristics of biofilm formation when grown on Congo red agar, in which biofilm-producing colonies appeared black. The study highlights the need for further research to explore the underlying resistance mechanisms and identify innovative strategies to prevent and eradicate biofilms to curb the spread of resistant bacterial strains.
1. Khalil M.A., Elhariry H.M., Alzaidi T.M., 2021. Disinfectant as removal agent of the pre-formed biofilm by Staphylococcus sp. isolated from dental clinics in Taif, KSA. Periodicum Biologorum. 123(1–2), 19–27.
2. Kranjec C., Morales Angeles D., Torrissen Mårli M., Fernández L., García P., Kjos M., Diep D.B., 2021. Staphylococcal in biofilms: challenges and novel therapeutic perspectives. Antibiotics. 10(2), 131.
3. Datta S., Nag S., Roy D.N., 2024. Biofilm-producing antibiotic-resistant bacteria Indian patients: a comprehensive review. Current Medical Research and Opinion. 40(3), 403–422.
4. Chen P., Zeng J., Hong F., Li C., Wang H., Yu X., 2024. The importance of biofilm contamination control for dental unit waterlines: a multicenter assessment of the microbiota diversity of biofilm in dental unit waterlines. Journal of Oral Microbiology. 16(1), 2299496.
5. Bayani M., Raisolvaezin K., Almasi-Hashiani A., Mirhoseini S.H., 2023. Bacterial biofilm prevalence in dental unit waterlines: a systematic review and meta-analysis. BMC Oral Health. 23(1), 158.
6. Hoogenkamp M.A., Brandt B.W., Laheij A.M., de Soet J.J., Crielaard W., 2021. The microbiological load and microbiome of the Dutch dental unit ; ‘please, hold your breath’. Water Research. 200, 117205.
7. Belmamoun A.R., Ammam A., Berrabah I., Reguig K.B., 2017. Coagulase gene polymorphism and antimicrobial susceptibility of Staphylococcus aureus isolated from bovine subclinical mastitis milk in Sidi-Bel-Abbes, Algeria. South Asian Journal of Experimental Biology. 7(1), 21-27.
8. Batabyal B., 2016. Oral carriage and suffering of Staphylococcus aureus : Oral infection and S. aureus. Educreation Publishing.
9. Chaturvedi A., 2022. Staphylococcus aureus : Cases representing MRSA with their complications and diagnostic tests. Booksclinic Publishing.
10. Camille D., 2014. Pratique en microbiologie de laboratoire : Recherche de bactéries et de levures-moisissures. Lavoisier.
11. Gahrn‐Hansen B., Heltberg O., Rosdahl V.T., Søgaard P., 1987. Evaluation of a conventional routine method for identification of clinical isolates of coagulase‐negative Staphylococcus and Micrococcus species. Comparison with API Staph and API Staph Ident. Acta Pathologica Microbiologica Scandinavica Series B : Microbiology. 95(1–6), 283–292.
12. Bello C., Qahtani A., 2005. Pitfalls in the routine diagnosis of Staphylococcus aureus. African Journal of Biotechnology. 4(1), 83–86.
13. Stiles M.E., Holzapfel W.H., 1997. Lactic acid bacteria of foods and their current taxonomy. International Journal of Food Microbiology. 36(1), 1–29.
14. Leboffe M.J., Pierce B.E., 2021. A photographic atlas for the microbiology laboratory. Morton Publishing Company.
15. Cheesbrough M., 2006. District laboratory practice in tropical countries, part 2. Cambridge University Press.
16. Akbar A., Anal A.K., 2013. Prevalence and antibiogram study of Salmonella and Staphylococcus aureus in poultry meat. Asian Pacific Journal of Tropical Biomedicine. 3(2), 163–168.
17. Mustapha A., Bello H., Ibrahim M., Wakil S., Bello R., 2020. Evaluation of biofilm formation by Staphylococcus aureus recovered from clinical samples of patients attending a tertiary care hospital in North-Eastern Nigeria. Archives of Clinical Microbiology. 11(5), 125.
18. Hardan L., Kassis C., Geitani R., [s.d.]. International Arab Journal of Dentistry. [Information manquante pour volume et pages].
19. Hefzy E.M., Radwan T.E., Hozayen B.M., Mahmoud E.E., Khalil M.A., 2023. Antiseptics and mupirocin resistance in clinical, environmental, and colonizing coagulase-negative Staphylococcus isolates. Antimicrobial Resistance & Infection Control. 12(1), 110.
20. Jimenez A., Bologna-Molina R., Almeda O.E., Vargas N., Maldonado O.T., Ortiz G., Cedeño S.A., González R.G., 2022. Presencia de Staphylococcus aureus y epidermidis y su identificación de Gram en diferentes restauraciones odontológicas. Odontoestomatología. 24, 1–1.
21. Mahdi M.A., Raheem Z.K., Hamoodi H.F., Aubed A.J., 2024. Isolation, identification and antimicrobial susceptibility of some bacterial species isolated from dental plaque. Al-Nahrain Journal of Science. 27(2), 91–98.
22. Sugiartha I.E., Semedi B.P., Wardhani P., Rejeki I.P.S., 2017. Comparison results of analytical profile index and disc diffusion antimicrobial susceptibility test to technical dedicated reasonable 300B method. Indonesian Journal of Clinical Pathology and Medical Laboratory. 23(2), 131–137.
23. Mihai C.N., Ciochinda G., Burcea C.C., Burlibasa M., Perieanu V.S., Perieanu M.V., Eftene O., Babiuc I., Stanescu R., Popoviciu O., 2020. Isolation and identification of the microbial strains from the dental plaque in the patients with fixed dental appliances – preliminary study. Romanian Journal of Medical Practice. 15(1), 70.
24. Fernandes Queiroga Moraes G., Cordeiro L.V., de Andrade Júnior F.P., 2021. Main laboratory methods used for the isolation and identification of Staphylococcus spp. Revista Colombiana de Ciencias Químico-Farmacéuticas. 50(1), 5–28.
25. Bonar E., Międzobrodzki J., Władyka B., 2018. The staphylococcal coagulases. In : Pet-to-man travelling Staphylococci. Elsevier, pp. 95–102.
26. Chon J.-W., Lee U.J., Bensen R., West S., Paredes A., Lim J., Khan S., Hart M.E., Phillips K.S., Sung K., 2020. Virulence characteristics of mecA-positive multidrug-resistant clinical coagulase-negative staphylococci. Microorganisms. 8(5), 659.
27. Okshevsky M., Meyer R.L., 2015. The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilms. Critical Reviews in Microbiology. 41(3), 341–352.
28. Erler T., Droop F., Lübbert C., Knobloch J.K., Carlsen L., Papan C., Schwanz T., Zweigner J., Dengler J., Hoffmann M., 2024. Analysing carbapenemases in hospital wastewater: insights from intracellular and extracellular DNA using qPCR and digital PCR. Science of the Total Environment. 950, 175344.
29. França A., Gaio V., Lopes N., Melo L.D., 2021. Virulence factors in coagulase-negative staphylococci. Pathogens. 10(2), 170.
30. Malinowski E., Lassa H., Tomaszewska J., Małkińska-Horodyska M., 2011. Phenotypical identification of atypical Staphylococcus aureus strains isolated from milk of cows from one herd. [Détails de la revue manquants].
31. Bannerman W.K.T., 1999. Manual of Clinical Microbiology. ASM Press.
32. Personne P., Bes M., Lina G., Vandenesch F., Brun Y., Etienne J., 1997. Comparative performances of six agglutination kits assessed by using typical and atypical strains of Staphylococcus aureus. Journal of Clinical Microbiology. 35(5), 1138–1140.
33. Cuny C., Pasemann B., Witte W., 1999. The ability of the Dry Spot Staphytect Plus test, in comparison with other tests, to identify Staphylococcus species, in particular S. aureus. Clinical Microbiology and Infection. 5(2), 114–116.
34. Gagnaire J., Verhoeven P., Denis C., Grattard F., Carricajo A., Pozzetto B., Berthelot P., 2015. Prise en charge des bactéries multirésistantes aux antibiotiques dans les établissements de santé. Feuillets de Biologie. 322.
35. Heath V., Cloutman-Green E., Watkin S., Karlikowska M., Ready D., Hatcher J., Pearce-Smith N., Brown C., Demirjian A., 2023. Staphylococcus capitis: review of its role in infections and outbreaks. Antibiotics. 12(4), 669.
36. Mombach Pinheiro Machado A.B., Reiter K.C., Paiva R.M., Barth A.L., 2007. Distribution of staphylococcal cassette chromosome mec (SCCmec) types I, II, III and IV in coagulase-negative staphylococci from patients attending a tertiary hospital in southern Brazil. Journal of Medical Microbiology. 56(10), 1328–1333.
37. Simjee S., Weese J.S., Singh R., Trott D.J., Essack S., Chuanchuen R., Mehrotra S., 2024. Redefining cross-resistance, co-resistance and co-selection: beyond confusion ? Journal of Antimicrobial Chemotherapy. 79(10), 2417–2420.
38. Carle S., 2009. La résistance aux antibiotiques : un enjeu de santé publique important. Pharmactuel. 42(2), 6–21.
39. Asadollahi P., Farzan B., Rezaei F., Delfani S., Ashrafi B., Soroush S., 2021. First report on the characteristics of methicillin-resistant Staphylococcus capitis isolates and an NRCS-A-clone related isolate obtained from Iranian children. Infectious Disorders – Drug Targets. 21(3), 459–463.
40. Ravaioli S., De Donno A., Bottau G., Campoccia D., Maso A., Dolzani P., Balaji P., Pegreffi F., Daglia M., Arciola C.R., 2024. The opportunistic pathogen Staphylococcus warneri: virulence and antibiotic resistance, clinical features, association with orthopedic implants and other medical devices, and a glance at industrial applications. Antibiotics. 13(10), 972.
41. Karam B.R.S., Ribeiro P., 2022. Staphylococcus warneri: brief literature review. Braz J Health Rev. 5(2), 4525–4531.
42. Sakalauskienė G.V., Radzevičienė A., 2024. Antimicrobial resistance: what lies beneath this complex phenomenon ? Diagnostics. 14(20), 2319.
43. Yang X., Li M., Jia Z.-C., Liu Y., Wu S.-F., Chen M.-X., Hao G.F., Yang Q., 2024. Unraveling the secrets : evolution of resistance mediated by membrane proteins. Drug Resistance Updates. 101140.
44. Adekanmbi A.O., Soyoye O.F., Adelowo O.O., 2019. Characterization of methicillin-resistance gene mecA in coagulase-negative staphylococci (CoNS) recovered from wastewater of two healthcare facilities in Nigeria. Gene Reports. 17, 100541.
45. Asante J., Abia A.L., Anokwah D., Hetsa B.A., Fatoba D.O., Bester L.A., Amoako D.G., 2022. Phenotypic and genomic insights into biofilm formation in antibiotic-resistant clinical coagulase-negative Staphylococcus species from South Africa. Genes. 14(1), 104.
46. Li Y., Xiao P., Wang Y., Hao Y., 2020. Mechanisms and control measures of mature biofilm resistance to antimicrobial agents in the clinical context. ACS Omega. 5(36), 22684–22690.
47. Terki I.K., Hassaine H., Terki A.K., Nadira B., Terki N.K., Bellifa S., Mhamedi I., 2020. Effects of certain disinfectants and antibiotics on biofilm formation by Staphylococcus aureus isolated from medical devices at the University Hospital Center of Sidi Bel Abbes, Algeria. African Journal of Clinical and Experimental Microbiology. 21(4), 304–310.
48. Romero L.C., Silva L.P., Teixeira N.B., de Camargo K.V., Del Masso Pereira M.A., Corrente J.E., Pereira V.C., Ribeiro de Souza da Cunha M.L., 2024. Staphylococcus capitis bloodstream isolates: investigation of clonal relationship, resistance profile, virulence and biofilm formation. Antibiotics. 13(2), 147.
49. Qu Y., Li Y., Cameron D.R., Easton C.D., Zhu X., Zhu M., Salwiczek M., Muir B.W., Thissen H., Daley A., 2020. Hyperosmotic infusion and oxidized surfaces are essential for biofilm formation of Staphylococcus capitis from the neonatal intensive care unit. Frontiers in Microbiology. 11, 920.
50. Evoung Chandja W.B., Onanga R., Mbehang Nguema P.P., Lendamba R.W., Mouanga-Ndzime Y., Mavoungou J.F., Godreuil S., 2024. Emergence of antibiotic residues and antibiotic-resistant bacteria in hospital wastewater: a potential route of spread to African streams and rivers, a review. Water. 16(22), 3179.