Assessment of the Antioxidant Potential of Methanolic Extracts from Leontodon lanata (L.) Fisch, Convolvulus arvensis L., and Ziziphora capitata L.
Afsaneh Yousefpour-Dokhanieh
1
(
Department of Horticultural Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran
)
Marzieh Babashpour-Asl
2
(
Department of Horticultural Science, Maragheh Branch, Islamic Azad University, Maragheh, Iran
)
Elnaz Farajzadeh‑Memari‑Tabrizi
3
(
Department of Agronomy, Malekan Branch, Islamic Azad University, Malekan, Iran
)
Keywords: Medicinal plant, Methanolic extract, Antioxidant, Free radical, Leontodon lanata (L.) Fisch, Convolvulus arvensis L., Ziziphora capitata L.,
Abstract :
Synthetic antioxidants are widely used today to mitigate oxidative stress and counter the harmful effects of free radicals. However, due to the potential side effects associated with synthetic antioxidants, there is growing interest in natural alternatives. The antioxidant properties of medicinal plants offer a compelling rationale for their application in the food, pharmaceutical, and personal care industries. Since plant-based foods, particularly fruits and vegetables, are the richest sources of antioxidants, this study aimed to investigate the antioxidant properties of methanolic extracts from Leontodon lanata (L.) Fisch, Convolvulus arvensis L., and Ziziphora capitata L. L. lanata was harvested from the Ilam region, while C. arvensis and Z. capitata were collected from the Andimeshk to Dehloran area. The total antioxidant capacity of these plants was assessed using the ferric reducing antioxidant power (FRAP) assay. The results revealed that L. lanata exhibited the highest antioxidant activity with a capacity of 3.87 mmol Fe²⁺ L⁻¹. In comparison, the antioxidant capacities of C. arvensis and Z. capitata were measured at 1.29 mmol Fe²⁺ L⁻¹and 1.69 mmol Fe²⁺ L⁻¹, respectively. Among the plants tested, L. lanata demonstrated the most potent antioxidant effect. These findings suggest that methanolic extracts of L. lanata, C. arvensis, and Z. capitata, particularly L. lanata, could be valuable as natural supplements in the food and pharmaceutical industries, supporting health and therapeutic applications.
1. Emami B., Shakerian A., Sharafati Chaleshtouri R., Rahimi E. 2024. Antioxidant, antimicrobial, and anticancer effects of the Russian olive (Elaeagnus angustifolia L.) fruit extracts. Casp J Environ Sci. 1-9. doi:10.22124/cjes.2024.8006.
2. Ebrahimi Y., AL-Baghdady H.F., Hameed N.M., Iswanto A.H., Shnain Ali M., Hammoodi H.A., Hashim Kzar H., Aravindhan S., Khodaei S.M., Alikord M., Pirhadi M., 2022. Common fatty acids and polyphenols in olive oil and its benefits to heart and human health. Casp J Environ Sci. 1-7. doi:10.22124/cjes.2022.5976.
3. Amendola C., Iannilli I., Restuccia D., Santini I., Vinci G., Akbary P., 2024. Determination of antioxidant and phytochemical properties of premix extract of brown macroalgae Padina australis, Sargassum licifolium, and Stoechospermum marginatum from Chabahar coast, Southeastern Iran. Aquat Anim Nutr. 10(1), 27-41. doi:10.22124/janb.2024.26283.1229.
4. Navarro-Pascual-Ahuir M., Lerma-García M.J., Simó-Alfonso E.F., Herrero-Martínez J.M., 2016. Determination of water-soluble vitamins in energy and sport drinks by micellar electrokinetic capillary chromatography. Food Control. 63, 110-116.
5. Emami B., Shakerian A., Sharafati Chaleshtouri R., Rahimi E., 2024. Antioxidant, antimicrobial, and anticancer effects of the Russian olive (Elaeagnus angustifolia L.) fruit extracts. Casp J Environ Sci. 1-9. doi:10.22124/cjes.2024.8006.
6. Omotayo A.R., Oseni M.O., Oseni O.A., 2024. Medicinal benefits of aqueous extract of lemongrass (Cymbopogon citratus): effects of some biochemical evaluations, anti-microbial properties and characterization of three metallic nanoparticles. JBiochem Phytomed. 3(2), 62-71. doi: 10.34172/jbp.2024.20.
7. Rabiepour A., Babakhani A., Zakipour Rahimabadi E., 2024. Effect of extraction methods on the antioxidant properties of water hyacinth (Eichhornia crassipes). Casp J Environ Sci. 1-19. doi:10.22124/cjes.2024.8015.
8. Behzadi F., Roosta Y., 2025. The Role of Plant-Based Antioxidants in the Prevention and Mitigation of Hemorrhoid Complications: A Comprehensive Review in Traditional Iranian Medicine. Plant Biotechnol Persa. 7 (1), 119-124
9. Kim C.J., Jung Y.H., Oh H.M., 2007. Factors indicating culture status during cultivation of Spirulina (Arthrospira) platensis. J Microbiol. 45(2), 122-127.
10. Volkmann H., Imianovsky U., Oliveira J.L., Sant'Anna E.S., 2008. Cultivation of Arthrospira (Spirulina) platensis in desalinator wastewater and salinated synthetic medium: protein content and amino-acid profile. Braz J Microbiol. 39, 98-101.
11. Abu-Taweel G.M., Mohsen G.A.M., Antonisamy P., Arokiyaraj S., Kim H.J., Kim S.J., Park K.H., Kim Y.O., 2019. Spirulina consumption effectively reduces anti-inflammatory and pain related infectious diseases. J Infect Public Health. 12(6), 777-782.
12. Chia S.R., Chew K.W., Leong H.Y., Manickam S., Show P.L., Nguyen T.H.P., 2020. Sonoprocessing-assisted solvent extraction for the recovery of pigment-protein complex from Spirulina platensis. Chemical Eng J. 398, 125613.
13. Gouveia L., Batista A.P., Miranda A., Empis J., Raymundo A., 2007. Chlorella vulgaris biomass used as colouring source in traditional butter cookies. Innov Food Sci Emerg Technolog. 8(3), 433-436.
14. Marvizadeh M.M., Akbari N., 2019. Development and Utilization of Rice Bran in Hamburger as a Fat Replacer. J Chem Health Risks. 9(3), 245-251.
15. Papadaki S., Kyriakopoulou K., Tzovenis I., Krokida M., 2017. Environmental impact of phycocyanin recovery from Spirulina platensis cyanobacterium. Innov Food Sci Emerg Technol. 44, 217-223.
16. Selahvarzi A., Ramezan Y., Sanjabi M.R., Mirsaeedghazi H., Azarikia F., Abedinia A., 2021. Investigation of antimicrobial activity of orange and pomegranate peels extracts and their use as a natural preservative in a functional beverage. J Food Measur Charact. 15(6), 5683-5694.
17. Mehta A., Sharma C., Kanala M., Thakur M., Harrison R., Torrico D.D., 2021. Self-Reported Emotions and Facial Expressions on Consumer Acceptability: A Study Using Energy Drinks. Foods. 10(2), 330.
18. Taghavi Takyar M.B., Haghighat Khajavi S., Safari R., 2019. Evaluation of antioxidant properties of Chlorella vulgaris and Spirulina platensis and their application in order to extend the shelf life of rainbow trout (Oncorhynchus mykiss) fillets during refrigerated storage. LWT. 100, 244-249.
19. Tańska M., Konopka I., Ruszkowska M., 2017. Sensory, Physico-Chemical and Water Sorption Properties of Corn Extrudates Enriched with Spirulina. Plant Foods for Human Nutr. 72(3), 250-257.
20. Agregán R., Munekata P.E., Franco D., Carballo J., Barba F.J., Lorenzo J.M., 2018. Antioxidant potential of extracts obtained from macro-(Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata) and micro-algae (Chlorella vulgaris and Spirulina platensis) assisted by ultrasound. Med. 5(2), 33.
21. Shalaby E.A., Shanab S.M., 2013. Comparison of DPPH and ABTS assays for determining antioxidant potential of water and methanol extracts of Spirulina platensis. Indian J Jeo Marine Sci. 42(5), 556-564
22. Rodríguez De Marco E., Steffolani M.E., Martínez C.S., León A.E., 2014. Effects of spirulina biomass on the technological and nutritional quality of bread wheat pasta. LWT - Food Sci Technol. 58(1), 102-108.
23. Hashem Dabaghian E., Rezaei M., Tabarsa M., 2017. Ethanol extraction and solvent-solvent fractionation of algal antioxidant compounds (Enteromorpha intestinalis) Green. Iran J Nat Rec. 69(3), 385-396.
24. De Carvalho J.M., Maia G.A., De Figueiredo R.W., De Brito E.S., Rodrigues S., 2007. Development of a blended nonalcoholic beverage composed of coconut water and cashew apple juice containing caffeine. J Food Quality. 30 (5), 664-681.
25. Carr A. C., Lykkesfeldt J., 2021. Discrepancies in global vitamin C recommendations: a review of RDA criteria and underlying health perspectives. Crit Rev Food Sci Nutr. 61(5), 742-755.
26. Galani J. H.Y., Patel J.S., Patel N.J., Talati J.G., 2017. Storage of Fruits and Vegetables in Refrigerator Increases their Phenolic Acids but Decreases the Total Phenolics, Anthocyanins and Vitamin C with Subsequent Loss of their Antioxidant Capacity. Antioxidants. 6(3), 59.
27. Marvizadeh M.M., Mohammadi Nafchi A.R., Jokar M., 2016. Obtaining and Characterization of Bionanocomposite Film Based on Tapioca Starch/Bovine Gelatin/Nanorod Zinc Oxide. Int Cong Food Str Design, Turkey,160.
28. Marvizadeh M.M., Tajik A., Moosavian V., Oladzadabbasabadi N., Mohammadi Nafchi A., 2021. Fabrication of Cassava Starch/Mentha piperita Essential Oil Biodegradable Film with Enhanced Antibacterial Properties. J Chem Health Risks. 11(1), 23-29.
29. Augustin J., Johnson S.R., Teitzel C., Toma R.B., Shaw R.L., True R.H., Hogan J.M., Deutsch R.M., 1978. Vitamin composition of freshly harvested and stored potatoes. J Food Sci. 43(5), 1566-1570.
30. Golmakani M.T., Rezaei K., Mazidi S., Razavi S.H., 2012. Effect of alternative C2 carbon sources on the growth, lipid, and γ-linolenic acid production of spirulina (Arthrospira platensis). Food Sci Biotechnol. 21(2), 355-363.
31. Figueira F.d.S., Crizel T.d. M., Silva C.R., Salas-Mellado M.d.l.M., 2011. Pão sem glúten enriquecido com a microalga Spirulina platensis. Braz J Food Technol. 14, 308-316.
32. Sharoba A.M., 2014. Nutritional value of spirulina and its use in the preparation of some complementary baby food formulas. J Food Dairy Sci. 5(8), 517-538.
33. Čugura T., Pleština M., Bursać Kovačević D., Vahčić N., Dragović-Uzelac V., Levaj B., 2014. Influence of storage on quality and sensorial properties of sports drink with lemon juice and isomaltulose. Hrvatski časopis za prehrambenu tehnologiju. Biotehnologiju i Nutricionizam. 9(3-4), 110-116.
34. Dżugan M., Tomczyk M., Sowa P., Grabek-Lejko D., 2018. Antioxidant Activity as Biomarker of Honey Variety. Molecules. 23(8), 2069.
35. Marzieh Hosseini S., Shahbazizadeh S., Khosravi-Darani K., Reza Mozafari M., 2013. Spirulina paltensis: Food and function. Curr Nutr Food Sci. 9(3), 189-193.
36. Selahvarzi A., Sanjabi M.R., Ramezan Y., Mirsaeedghazi H., Azarikia F., Abedinia A., 2021. Evaluation of physicochemical, functional, and antimicrobial properties of a functional energy drink produced from agricultural wastes of melon seed powder and tea stalk caffeine. J Food Proc Preserv. 45(9), e15726.
37. Sözeri Atik D., Gürbüz B., Bölük E., Palabıyık İ., 2021. Development of vegan kefir fortified with Spirulina platensis. Food Biosci. 42, 101050.
38. Saharan V., Jood S., 2021. Effect of storage on Spirulina platensis powder supplemented breads. J Food Sci Technol. 58(3), 978-984.
39. Chaiklahan R., Chirasuwan N., Triratana P., Loha V., Tia S., Bunnag B., 2013. Polysaccharide extraction from Spirulina sp. and its antioxidant capacity. Int J Biolog Macromol. 58, 73-78.
40. Souza M.M.D., Prietto L., Ribeiro A.C., Souza T.D.D., Badiale-Furlong E., 2011. Assessment of the antifungal activity of Spirulina platensis phenolic extract against Aspergillus flavus. Ciência e Agrotecnologia. 35(6), 1050-1058.
41. Mahmoud S.H., Mahmoud R., Ashoush I., Attia M., 2015. Immunomodulatory and antioxidant activity of pomegranate juice incorporated with spirulina and echinacea extracts sweetened by stevioside. J Agricul Vet Sci. 8(2), 161-174.
42. Ishii M., Matsumoto Y., Nishida S., Sekimizu K., 2017. Decreased sugar concentration in vegetable and fruit juices by growth of functional lactic acid bacteria. Drug Discov Theraps. 11(1), 30-34
43. Ortega-Calvo J.J., Mazuelos C., Hermosin B., Saiz-Jimenez C., 1993. Chemical composition ofSpirulina and eukaryotic algae food products marketed in Spain. J Appl Phycol. 5(4), 425-435.
44. Aljobair M.O., Albaridi N.A., Alkuraieef A.N., AlKehayez N.M., 2021. Physicochemical properties, nutritional value, and sensory attributes of a nectar developed using date palm puree and spirulina. Int J Food Properties. 24(1), 845-858.
45. Şahin O.I., 2020. Functional and sensorial properties of cookies enriched with Spirulina and Dunaliella biomass. J Food SciTechnol. 57(10), 3639-3646.