Novel Nitrogen-Doped Carbon Dots for Degrading Azo Dyes and Sensing Heavy Metals
Mohd Abdullah sheikh
1
(
Research Scholar Bhagwant University, Ajmer-305004 Rajasthan, India
)
Ravinder Singh Chandok
2
(
Sri Guru Tegh Bahadur Khalsa College (Jabalpur), India
)
Khan Abida
3
(
Shaheed Himayun Muzzamil Memorial, Government Degree College, Anantnag (J & K), India
)
Keywords: N-CDs, Pumpkin seeds, Microwave irradiation, Urea, Mercury, Congo-red, TiO2/N-CDs,
Abstract :
This work presents an application perspective of recently developed, novel green synthesized self-heteroatom doped N-carbon dots (N-CDs) derived from biomass pumpkin seeds, possessing an energy gap of 2.35 eV and an unremarkable quantum efficiency of 65.5%, besides a graphitic carbon structure they are doped with various metal and nonmetal ions and an overall size distribution of 5-8 nm. Here we have used them as a novel photocatalyst by mixing them with widely known photocatalyst titanium dioxide, thereby enhancing the overall photocatalytic efficiency of the amalgam of both materials. Further, this novel amalgam of Carbon dots has demonstrated a well-distinguished FTIR, XRD, and UV absorbance and emission wavelength spectra, and displayed a broad absorbance wavelength spectra in lower energy region, hence more efficient compared to pure Titanium dioxide. Thus the composite of TiO2/N-CDs degraded Congo red dye in a short duration of 18 minutes, illuminated under UV light, and has shown 90% degradation efficiency. However, only 40% degradation was shown by pure N-CDs. Further, we have used these Carbon dots as a sensing material for the detection of heavy metal ions and the results have demonstrated a good detection limit of the heavy metal Hg2+ ions among other tested metal ions, owing to its excellent selective and sensitive property of fluorescent quenching analysis, resulted in the creation of non- fluorescent centers, effective charge transfer and overall energy transfer, with a minimum detection threshold limit of 20 nM.
1. Xu X.Y., Ray R., Gu Y.L., Ploehn H.J., Gearheart L., Raker K., Scrivens W.A., 2004. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of American Chemical Society. 126(40), 12736–12737.
2. Sun Y.P., Bing Z., Yi L., Wei W., Fernando K.A.S., Pathak P., Meziani M.J., Harruff B.A., Xin W., Wang H., 2006. Quantum-sized carbon dots for bright and colorful photoluminescence. Journal of American Chemical Society. 128(24), 7756–7757.
3. Zhang M.R., Su R., Zhong J., Fei L., Cai W., Guan Q.W., Li W.J., Li N., Chen Y.S. Cai L.L., 2019. Red/orange
dual-emissive carbon dots for pH sensing and cell imaging. Nano Research. 12, 815–821.
4. Zhang Y.N., Zhang X.W., Shi Y.P., Sun C., Zhou N., Wen H.X., 2020. The synthesis and functional study of
multicolor nitrogen-doped carbon dots for live cell nuclear imaging. Molecules. 25(2), 306.
5. Liu J.J., Dong Y.Y., Ma Y.X., Han Y.X., Ma S., Chen H.L., Chen X.G., 2018. One-step synthesis of red/green dual-emissive carbon dots for ratiometric sensitive ONOO− probing and cell imaging. Nanoscale. 10, 13589–13598.
6. Qin K.H., Zhang D.F., Ding Y.F., Zheng X.D., Xiang Y.Y., Hua J.H., Zhang Q., Ji X.L., Li B., Wei Y.L., 2020. Applications of hydrothermal synthesis of Escherichia coli derived carbon dots in in-vitro and in-vivo imaging and p-nitrophenol detection. Analyst. 145, 177–183.
7. Liu J.J., Li D.W., Zhang K., Yang M.X., Sun H.C., Yang B., 2018. One step hydrothermal synthesis of nitrogen-doped conjugated carbonized polymer dots with 31% efficient red emission for In-Vivo imaging. Small. 14(15), 1703919–1703929.
8. Shu Y., Lu J., Mao Q.X., Song R.S., Wang X.Y., Chen X.W., Wang J.H., 2017. Ionic liquid mediated organophiliccarbon dots for drug delivery and bioimaging. Carbon. 114, 324–333.
9. Kailasa S.K., Bhamore J.R., Koduru J.R., Park T.J., 2019. Carbon dots as carriers for the development of controlleddrug and gene delivery systems. Biomedical Applications of Nanoparticles. Chapter 11. pp. 295–317.
10. Yang T., Huang J.L., Wang Y.T., Zheng A.Q., Shu Y., Wang J.H., 2019. β-cyclodextrin-decorated carbon dots serveas nanocarriers for targeted drug delivery and controlled release. Chem Nano Mat. 5(4), 479–487.
11. Jana J., Lee H.J., Chung J.S., Kim M.H., Hur S.H., 2019. Blue emitting nitrogen-doped carbon dots as a fluorescentprobe for nitrite ion sensing and cell-imaging. Analytica Chimica Acta. 1079, 212–219.
12. Wang J., Li R.S., Zhang H.Z., Wang N., Zhang Z., Huang C.Z., 2017. Highly fluorescent carbon dots as selective and visual probes for sensing copper ions in living cells via an electron transfer process. Biosensors and Bioelectronics. 97, 157–163.
13. Hu J., Tang F., Jiang Y., Liu C., 2020. Rapid screening and quantitative detection of Salmonella using a quantum dot nanobead-based biosensor. Analyst. 145(6), 2184–2190.
14. Han M., Zhu S.J., Lu S., Song Y.B., Feng T.L., Tao S.Y., Liu J.J., Yang B., 2018. Recent progress on the photocatalysis of carbon dots: Classification, mechanism and applications. Nano Today. 19, 201–218.
15. Yu H.J., Shi R., Zhao Y.F., Waterhouse G.I., Wu L.Z., Tung C.H., Zhang T.R., 2016. Smart utilization of carbondots in semiconductor photocatalysis. Advanced Materials. 28(43), 9454–9477.
16. Zhou Y., Zahran E.M., Quiroga B.A., Perez J., Mintz K.J., Peng Z., Liyanage P.Y., Pandey R.R., Chusuei C.C., Leblanc R.M., 2019. Size-dependent photocatalytic activity of carbon dots with surface-state determined photoluminescence. Applied Catalysis B: Environmental. 248, 157–166.
17. Yuan F.L., Yuan T., Sui L.Z., Wang Z.B., Xi Z., Li Y.C., Li X.H., Fan L.Z., Tan Z.A., Chen A et al., 2018. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nature Communications. 9, 2249–2260.
18. Zheng J.X., Liu X.H., Yang Y.Z., Liu X.G., Xu B.S., 2018. Rapid and green synthesis of fluorescent carbon dots from starch for white light-emitting diodes. New Carbon Materials. 33(3), 276–288.
19. Hu C., Li M.Y., Qiu J.S., Sun Y.P., 2019. Design and fabrication of carbon dots for energy conversion and storage. Chemical Society Reviews. 48(8), 2315–2337.
20. Fernando K.S., Sahu S., Liu Y., Lewis W.K., Guliants E.A., Jafariyan A., Wang P., Bunker C.E., Sun Y.P., 2015Carbon quantum dots and applications in photocatalytic energy conversion. ACS Applied Material & Interfaces. 7(16), 8363–8376.
21. Genc R., Alas M.O., Harputlu E., Repp S., Kremer N., Castellano M., Colak S.G., Ocakoglu K., Erdem E., 2012. High-capacitance hybrid supercapacitor based on multi-colored fluorescent carbon-dots. Scientific Reports. 7, 11222.
22. Zhu C., Zhai J., Dong S., 2012. Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. Chemical communications. 48(75), 9367-9369.
23. Huang H., Lv J.J., Zhou D.L., Bao N., Xu Y., Wang A.J., Feng J.J., 2013. One-pot green synthesis of nitrogen doped carbon nanoparticles as fluorescent probes for mercury ions. RSC Advances. 3(44), 21691–21696.
24. M Xue., M Zou., J Zhao., Z Zhan., S Zhao., 2015. Green preparation of fluorescent carbon dots from lychee seeds and their application for the selective detection of methylene blue and imaging in living cells. Journal of Materials Chemistry B. 3(33), 6783–6789.
25. Wang D., Wang X., Guo Y., Liu W., Qin W., 2015. Imidazole derivative-functionalized carbon dots: using as a fluorescent probe for detecting water and imaging of live cells. Dalton Transactions. 44(12), 5547–5554.
26. Yu D., Nagelli E., Du F., Dai L., Phys J., 2010. Metal-free carbon nanomaterials become more active than metal catalysts and last longer. The Journal of Physical Chemistry Letters. 1(14), 2165–2173.
27. Bindra P., Hazra A., 2018. Capacitive gas and vapor sensors using nanomaterials. Journal of Materials Science: Materials in Electronics. 29(8), 6129–6148.
28. Renzoni A., Zino F., Franchi E., 1998. Mercury Levels along the Food Chain and Risk for Exposed Populations. Environmental Research. 77(2), 68-72.
29. Driscoll T., MasonP., ChanM., JacobJ., PirroneN., 2013, May 21. Mercury as a Global Pollutant: Sources, Pathways, and Effects. Environmental Science and Technology. 47(10), 4967–4983.
30. Liu J., Lu Y., 2007. Rational design of “turn‐on” allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity. Angewandte Chemie International Edition. 46(40), 7587-7590.
31. Gutknecht J., 1981. Inorganic mercury (Hg2+) transport through lipid bilayer membranes. The Journal of Membrane Biology. 61, 61–66.
32. K Leopold, M Foulkes, P Worsfold., 2010. Methods for the determination and speciation of mercury in natural waters-A review. Analytica chimica acta. 663(2), 127-138.
33. Gong Y.J, Zhang X.B, Zhang C.C, Luo A.L, Fu T, Tan W, Shen G.L, Yu R.Q., 2012. Through Bond Energy Transfer: A Convenient and Universal Strategy toward Efficient Ratiometric Fluorescent Probe for Bioimaging Applications. Analytical Chemistry. 84(24), 10777–10784.
34. Lin Y.H., Tseng W.L., 2010. Ultrasensitive sensing of Hg(2+) and CH(3)Hg(+) based on the fluorescence quenching of lysozyme type VI-stabilized gold nanoclusters. Analytical Chemistry. 82(22), 9194-9200.
35. Chong M.N., Jin B., Chow C.W.K., Saint C., 2010. Recent developments in photocatalytic water treatment technology: A review. Water Research. 44 (10) 2997–3027.
36. A Kubacka., M. Fernandez Garcia., G Colon., 2012. Advanced nanoarchitectures for solar photocatalytic applications. Chemical Reviews. 112 (3), 1555–1614.
37. R Atchudan., T.N Jebakumar Immanuel Edison., S Perumal., Karthikeyan D., Lee Y.R., 2017. Effective photocatalytic degradation of anthropogenic dyes using graphene oxide grafting titanium dioxide nanoparticles under UV-light irradiation. Journal of Photochemistry and Photobiology A: Chemistry. 333, 92–104.
38. Wang J.L., Xu L.E., 2012. Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application. Critical Reviews in Environmental Science and Technology. 42(3), 251-325.
39. Safardoust Hojaghan H., Salavati Niasari M., 2017. Degradation of methylene blue as a pollutant with N-doped graphene quantum dot/titanium dioxide nanocomposite. Journal of Cleaner Production. 148, 31–36.
40. Mohd Abdullah Sh., Khan A., Chandok R S., 2022. A Compressive study on Biomass derived Carbon dots. Asian Journal of Organic and Medicinal Chemistry. 7(2), April-June Special Issue-II, 568-605.
41. Prawit N., Chanthai S., Mahachai R., Oh W.C., 2016. Sonocatalytic performance of ZnO /graphene/ TiO2nanocomposite for degradation of dye pollutants (methylene blue, texbrite BAC-L, texbrite BBU-L and texbrite NFW-L) under ultrasonic irradiation. Dyes and Pigments. 134, 487–497.
42. Atchudan R., Thomas N.J.I Edison., Perumal S., Vinodh R., Lee Y.R., 2018. In-situ green synthesis of nitrogen-doped carbon dots for bioimaging and TiO2 nanoparticles@ nitrogen-doped carbon composite for photocatalytic degradation of organic pollutants. Journal of Alloys and Compounds. 766, 12–24.
43. Zhao D., Sheng G., Chen C., Wang X., 2012. Enhanced photocatalytic degradation of methylene blue under visible irradiation on graphene@TiO2 dyade structure. Applied Catalysis B: Environmental. 111-112, 303–308.
44. Wu F., Li X., Liu W., Zhang S., 2017. Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C3N4-RGO-TiO2 nano-heterojunctions. Applied Surface Science. 405, 60–70.
45. Chen J., Shu J., Anqi Z., Juyuan H., Yan Z., Chen J., 2016. Synthesis of carbon quantum dots/TiO2 nanocomposite for photo-degradation of Rhodamine B and cefradine. Diamond and Related Materials. 70, 137–144.
46. Hasan M.T., Gonzalez Rodriguez R., Ryan C., Faerber N., Coffer J.L., Naumov A.V., 2018. Photo-and electroluminescence from nitrogen-doped and nitrogen– sulfur codoped graphene quantum dots. Advanced Functional Materials. 28(42), 1804337.
47. Jiqian Y., Xianlong Z., Dihua W., Xudong Z., Zhen Z., 2017. S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries. Advanced Materials. 29(6), 1604108.
48. Sheikh M.A., Chandok R.S., Abida Khan., 2024. Green perspective of N-CDs towards energy crisis and photodegradation of toxic dyes. Discover Materials. 4(1), 9.
49. Mohd Abdullah Sh., Khan A., Chandok R.S., 2022. Oxide Based Nano-Sensors For Industrial And Environmental Monitoring. Journal of Optoelectronics Laser. 41(5), 907–927.
50. Sheikh M.A., Chandok R.S., Abida K., 2024. Revolutionizing the sensing properties of green carbon dots for monitoring carbon dioxide and carbon monoxide at room temperature. Carbon Letters. Online first.
51. El Amri A., Kadiri L., Hsissou R., Lebkiri A., Wardighi Z., Rifi E., Lebkiri A., 2023. Investigation of Typha Latifolia (TL) as potential biosorbent for removal of the methyl orange anionic dye in the aqueous solution: Kinetic and DFT approaches. Journal of Molecular Structure. 1272, 134098.
52. Jaouad B., Abdennacer I., El Faydy M., Doumane Gh., Staoui A., Hsissou R., Lebkiri A., Habsaoui A., Zarrouk A., El Housseine R., 2023. Investigation of the cationic resin as a potential adsorbent to remove MR and CV dyes: Kinetic, equilibrium isotherms studies and DFT calculations. Journal of Molecular Structure. 1278(5), 134849.
53. Assia J., Abdelhay., Rachid H., Azzedine L., Basma Z., Fatima Z.B., El mahdi H., El Housseine R., Ahmed L., 2023. Synthesis of a chitosan@hydroxyapatite composite hybrid using a new approach for high-performance removal of crystal violet dye in aqueous solution, equilibrium isotherms and process optimization. Journal of the Taiwan Institute of Chemical Engineers. 149,105006.
54. Imane L., Brahim A., Rachid H., Zaki S., Makfire S., Avni B., Abdelhay E., Essaadaoui Y., Lamya K., Ahmed L., El Rifi H., 2023. Investigation of the anionic polyacrylamide as a potential adsorbent of crystal violet dye from aqueous solution: Equilibrium, kinetic, thermodynamic, DFT, MC and MD approaches. Journal of Molecular Liquids. 372(17), 121220.
55. Kadiri L., Ouass A., Hsissou R., Safi Z., Wazzan N., Essaadaoui Y., Lebkiri I., El Khattabi O., Rifi E., Lebkiri A., 2021. Adsorption properties of coriander seeds: Spectroscopic kinetic thermodynamic and computational approaches. Journal of Molecular Liquids. 343(11), 116971.
56. Sheikh M.A., Chandok R.S., Abida K., 2023. High energy density storage, antifungal activity and enhanced bioimaging by green self-doped heteroatom carbon dots. Discover Nano. 18(1), 132.
57. Zhang W., Li N., Chang Q., Chen Z., Hu S., 2020. Making a Cup of Carbon Dots for Ratiometric and Colorimetric Fluorescent Detection of Cu2+ Ions. Colloids and Surfaces A.: Physicochemical and Engineering Aspects. 586, 124233.
58. Sun Y., Wei M., Liu R., Wang H., Li H., Kang Q., Shen D., 2019. A Smartphone-Based Ratiometric Fluorescent Device for Field Analysis of Soluble Copper in River Water Using Carbon Quantum Dots as Luminophore. Talanta. 194, 452–460.
59. Liu H., Xu H., Li H., 2022. Detection of Fe3+ and Hg2+ Ions by Using High Fluorescent Carbon Dots Doped With S And N as Fluorescence Probes. Journal of Fluorescence. 32(3), 1089–1098.
60. Huihui F., Zhang Y., Cui F., 2022. Enhanced photocatalytic activity of Cu2O for visible light-driven dye degradation by carbon quantum dots. Environmental Science and Pollution Research. 29(7), 8613-8622.
61. Safardoust-Hojaghan H., Salavati-Niasari M., 2017. Degradation of methylene blue as a pollutant with N-doped graphene quantum dot/titanium dioxide nanocomposite. Journal of Cleaner Production. 148, 31–36.
62. Hu X., Han W., Zhang M., Li D., Sun H 2022. Enhanced adsorption and visible-light photocatalysis on TiO2 with in situ formed carbon quantum dots. Journal of Environmental Science and Pollution Research. 29(37), 56379–56392.
63. Sathish Kumar M., Yashoda K.Y., Kumaresan D., Nikhil K K., Sudip K B., 2018. TiO2-carbon quantum dots (CQD) nanohybrid: enhanced photocatalytic activity. Materials Research Express. 5(7), 075502.
64. Harun N.H., Rahman M.N.A., Kamarudin W.F.W., Irwan Z., Muhammud A., Akhir N.E.F.M., Yaafar M.R.,2018. Photocatalytic Degradation Of Congo Red Dye Based On Titanium Dioxide Using Solar And UV Lamp. Journal of Fundamental and Applied Sciences. 20168, 10(1S), 832-846.