Influence of Arsenic (III), Cadmium (II), Chromium (VI), Mercury (II), and Lead (II) Ions on Human Triple Negative Breast Cancer (HCC1806) Cell Cytotoxicity and Cell Viability
Subject Areas : Journal of Chemical Health RisksTsdale F. Mehari 1 , Checo J. Rorie 2 , Sherette S. Godfrey 3 , Radiah C. Minor 4 , Sayo O. Fakayode 5
1 - Department of Chemistry, North Carolina A&T State University, Greensboro, NC, 27411, USA
2 - Department of Biology, North Carolina A&T State University, Greensboro, NC, 27411, USA
3 - Department of Energy and Environmental Systems, North Carolina A&T State University, Greensboro, NC 27411, USA
4 - Department of Animal Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA
5 - Department of Chemistry, North Carolina A&T State University, Greensboro, NC, 27411, USA
Keywords: Cytotoxicity, Heavy-Metal-Ions, Human-Triple-Negative-Breast-Cancer-Cells, HCC1806-Cells Cell-Viability, Optical-Microscopy, Cell-Death, Flow Cytometry,
Abstract :
The hazardous consequences of heavy metal ions (HMIs) on human health necessitate the immediate need to probe fundamentally the interactions and cytotoxic effects of HMIs on humans. This study investigated the influence of five toxic HMIs (arsenic (As (III)), cadmium (Cd (II)), chromium (Cr (VI)), mercury (Hg (II)), and lead (Pb (II))) on human TNBC (HCC 1806) cell viability using optical microscopy, trypan blue dye-exclusion assays, and flow cytometry. The TNBC cells were exposed to varying concentrations of HMIs for 24 and 48 hours. We evaluated the influence of the concentrations and duration of HMIs exposure on TNBC cell viability. Light microscopy, cell viability assays, revealed that after 48-hour treatment of TNBC cells with 1 x 10-5 M of As (III), Cd (II), Hg (II), Cr (IV), and Pb (II) resulted in cell viabilities of 23%, 34%, 35%, 56%, 91% respectively, suggesting that As (III) has the greatest cytotoxicity (77% cell death) while Pb (II) showed the least (9% cell death). Furthermore, flow cytometry revealed that while Pb (II), As (III) and Cr (IV) had significant increases in cell death, Hg (II) caused a G1 arrest. Together, this study revealed that HMIs cause a differential cytotoxic effect on TNBC cells and suggest that they may have very different genotoxic targets and implications in their mutagenic potential.
1. Olu-Owolabi B. I., Fakayode S.O., Adebowale K.O., Onianwa P.C., 2007. Proximate and elemental composition and their estimated daily intake in infant formulae from developed and developing countries: a comparative analysis. Int J Food Agric and Environ. 5, 40-4.
2. Arnich N., Sirot V., Riviere G., Jean J., Noel L., Guerin T., Leblanc J.C., 2012. Dietary exposure to trace elements and health risk assessment in the 2nd french total diet study. Food Chem Toxicol. 50, 2432-49.
3. Liu X., Song Q., Tang Y., Li W., 2013. Human health risk assessment of heavy metals in soil-vegetable system: a multi-medium analysis. Sci Total Environ. 463, 530-40.
4. Calderon J., Ortiz-Perez D., Yanez L., Diaz-Barriga F., 2003. Human exposure to metals. Pathways of exposure, biomarkers of effect, and host factors. Ecotoxicol. Environ Safety. 56, 93-103.
5. Finster M.E., Gray K.A., Binns H.J., 2004. Lead levels of edibles grown in contaminated residential soils: a field survey. Sci Total Environ. 320, 245-57.
6. Ruiz-Ramos R., Lopez-Carrillo L., Rios-Perez A.D., De Vizcaya-Ruız A., Cebrian M.E., 2009. Sodium arsenite induces ROS generation, DNA oxidative damage, HO-1 and c-Myc proteins, NF-κB activation and cell proliferation in human breast cancer MCF-7 cells. Mutat Res. 674, 109–15.
7. Wang S., Shi X., 2001. Molecular mechanisms of metal toxicity and carcinogenesis. Mol Cell Biochem. 222, 3-9.
8. Florea A.M., Busselberg D., 2008. Arsenic trioxide in environmentally and clinically relevant concentrations interacts with calcium homeostasis and induces cell type specific cell death in tumor and non-tumor cells. Toxicol Lett.179, 34–42.
9. Florea A.M., Splettstoesser F., Busselberg D. 2007. Arsenic trioxide (As2O3) induced calcium signals and cytotoxicity in two human cell lines: SY-5Y neuroblastoma and 293 embryonic kidney (HEK). Toxicol Appl Pharm. 220, 292–301.
10. Abernathy C.O., Thomas D.J., Calderon R.L., 2003. Health effects and risk assessment of arsenic. J Nutr. 133, 1536S-8S.
11. Crespo-López M.E., Macêdo G.L., Pereira S.I., Arrifano G.P., Picanço-Diniz D.L., do Nascimento J.L.M., Herculano A.M., 2009. Mercury and human genotoxicity: critical considerations and possible molecular mechanisms. Pharmacol Res. 60, 212-20.
12. Tchounwou P.B., Ayensu W.K., Ninashvili N., Sutton D., 2003. Review: Environmental exposure to mercury and its toxico-pathologic implications for public health. Environ Toxicol.18, 149-75.
13. Goyer R.A. 1971. Lead and the kidney. Curr Top Pathol. 55, 147–76.
14. Rom W.N., 1976. Effects of lead on female reproduction: a review. Mt Sinai J Med. 43, 542-52.
15. Waalkes M.P., Fox D.A., Patierno S.R., McCabe M.J., 2000. Metals and disorders of cell accumulation: modulation of apoptosis and cell proliferation. Toxicol Sci. 56, 255-61.
16. Squibb K.S., Fowler B.A., 1981. Relationship between metal toxicity to subcellular systems and the carcinogenic response. Environ Health Perspect. 40, 181-8.
17. Alatise O.I., Schrauzer G.N., 2010. Lead exposure: a contributing cause of the current breast cancer epidemic in nigerian women. Biol Trace Elem Res.136, 127–39.
18. McElroy J.A., Shafer M.M., Trentham-Dietz A., Hampton J.M., Newcomb P.A. 2006. Cadmium exposure and breast cancer risk. J Natl Cancer Inst. 98, 869–73.
19. Benbrahim-Tallaa L., Tokar E.J., Diwan B.A., Dill A.L., Coppin J.F., Waalkes M.P., 2009. Cadmium malignantly transforms normal human breast epithelial cells into a basal-like phenotype. Environ Health Perspect.117, 1847–52.
20. Wei Z., Shi X., 2001. Molecular mechanisms of metal toxicity and carcinogenesis. Mol Cell Biochem. 222, 3-9.
21. Coradini D., Daidone M.G., 2004. Biomolecular prognostic factors in breast cancer. Curr Opin Obstet Gynecol. 16, 49–55.
22. Chacón R.D., Costanzo M.V., 2010. Triple-negative breast cancer. Breast Cancer Res. 12, S3.
23. Jevtic M., Velicki R., Popovic M., Cemerlic-Adjic N., Babovic S.S., Velicki L., 2010. Dietary influence on breast cancer. JBUON. 15, 455–61.
24. Fernand V.E., Losso J.N., Truax R.E., Villar E.E.,
Bwambok D.K., Fakayode S.O., Lowry M., Warner I.M., 2001. Rhein inhibits angiogenesis and the viability of hormone-dependent and-independent cancer cells under normoxic or hypoxic conditions in vitro. Chem Biol Interact.192, 220-232.
25. Nawrot T., Plusquin M., Hogervorst J., Roels H.A., Celis H., Thijs L., Vangronsveld J., Van Hecke E., Staessen J.A. 2006. Environmental exposure to cadmium and risk of cancer: a prospective population-based study. Lancet Oncol. 7, 119-26.
26. Hennessy B.T., Gonzalez-Angulo A.M., Stemke-Hale K., Gilcrease M.Z., Krishnamurthy S., Lee J.S., Fridlyand J., Sahin A., Agarwal R., Joy C., Liu W., Stivers D., Baggerly K., Carey M., Lluch A., Monteagudo C., He X., Weigman V., Fan C., Palazzo J., Hortobagyi G.N., Nolden L.K., Wang N.J., Valero V., Gray J.W., Perou C.M., Mills G.B., 2009. Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res. 69, 4116–24.
27. Herschkowitz J.I., Simin K., Weigman V.J., Mikaelian I., Usary J., Hu Z., Rasmussen K.E. Jones L.P., Assefnia S., Chandrasekharan S., Backlund M.G., Yin Y., Khramtsov A.I., Bastein R., Quackenbush J., Glazer R.I., Brown P.H., Green J.E., Kopelovich L., Furth P.A., Palazzo J.P., Olopade O.I., Bernard P.S., Churchill G. A., Van Dyke T., Perou C.M., 2007. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol. 8, R76.
28. Sørlie T., Perou C.M., Tibshirani R., Aas T., Geisler S., Johnsen H., Hastie T., Eisen M.B., van de Rijn M., Jeffrey S. S., Thorsen T., Quist H., Matese J.C., Brown P.O., Botstein D., Eystein-Lønning P., Børresen-Dale A.L., 2001. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci. 98, 10869-74.
29. Sorlie T., Tibshirani R., Parker J., Hastie T., Marron J.S., Nobel A., Deng S., Johnsen H., Pesich R., Geisler S., Demeter J., Perou C.M., Lønning P.E., Brwon P.O., Børresen-Dale A.L., Botstein D., 2003. Repeated observation of breast tumor sub-types in independent gene expression data set. Proc Natl Acad Sci. 100, 8418-23.
30. Bauer K.R., Brown M., Cress R.D., Parise C.A., Caggiano V., 2007. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California Cancer Registry. Cancer. 109, 1721 – 8.
31. Collett K., Stefansonn I.M., Eide J., Braaten A., Wang H., Eide G.E., Thoresen S.Ø., Foulkes W.D., Akslen L.A. 2005. A basal epithelial phenotype is more frequent in interval breast cancer compared with screen detected tumors. Cancer Epidemiol Biomarkers Prev. 1108-12.
32. Dent R., Trudeau M., Pritchard K.L., Hanna W.M., Kahn H.K., Sawka C.A., Lickley L.A., Rawlinson E., Sun P., Narod S.A., 2007. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 13, 4429-34.
33. Pal S.K., Mortimer J., 2009. Triple-negative breast cancer: novel therapies and new directions. Maturitas. 63, 269–74.
34. Morris G.J., Naidu S., Topham A.K., Guiles F., Xu Y., McCue P., Schwartz G.F., Park P.K., Rosenberg A.L., Brill K., Mitchell E.P., 2007. Differences in breast carcinoma characteristics in newly diagnosed African-American and Caucasian patients: a single-institution compilation compared with the National Cancer Institute‘s Surveillance, Epidemiology, and End Results Database. Cancer. 110, 876–84.
35. Cleator S., Heller W., Coombes R.C., 2007. Triple-negative breast cancer: therapeutic options. Lancet Oncol. 8, 235–244.
36. Suzana S., Cham B.G., Ahmad Rohi G., Mohd Rizal R., Fairulnizal M.N., Normah H., Fatimah A., 2009. Relationship between selenium and breast cancer: a case-control study in the Kiang Valley. Singapore Med J. 50, 265.
37. Xu L., Yin S., Banerjee S., Sarkar F., Reddy K.B., 2010. Enhanced anticancer effect of the combination of cisplatin and TRAIL in triple-negative breast tumor cells. Mol Cancer Ther.10, 550–7.
38. Silver D.P., Richardson A.L., Eklund A.C., Wang Z.C., Szallasi Z., Li Q., Juul N., Leong C.O., Calogrias D., Buraimoh A., Fatima A., Gelman R.S., Ryan P.D., Tung N.M., De Nicolo A., Ganesan S., Miron A., Colin C., Sgroi D.C., Ellisen L.W., Winer E.P., Garber J.E.2010. Efficacy of neoadjuvant cisplatin in triple negative breast cancer. J Clin Oncol. 28, 1145–53.
39. Sirohi B., Arnedos M., Popat S., Ashley S., Nerurkar A., Walsh G., Johnston S., Smith I.E., 2008. Platinum-based chemotherapy in triple-negative breast cancer. Ann Oncol. 19, 1847–52.
40. Siewit C.L., Gengler B., Vegas E., Puckett R., Louie M.C., 2010. Cadmium promotes breast cancer cell proliferation by potentiating the interaction between ERα and c-Jun. Mol Endocrinol. 24, 981–92.