قطعه بندی تصاویر با استفاده از روش خوشه بندی طیفی مبتنی بر سوپرپیکسل
محورهای موضوعی : مهندسی الکترونیکفاطمه افسری شولی 1 * , جلیل عظیم پور 2 , مرضیه دادور 3
1 - دانشجوی کارشناسی ارشد گروه نرمافزار کامپیوتر، واحد بوشهر، دانشگاه آزاد اسلامی، بوشهر، ایران
2 - گروه نرم افزار کامپیوتر، واحد بوشهر، دانشگاه آزاد اسلامی، بوشهر، ایران
3 - گروه هوش مصنوعی، واحد بوشهر، دانشگاه آزاد اسلامی، بوشهر، ایران
کلید واژه: بافت, رنگ, image segmentation, قطعهبندی تصویر, خوشهبندی فازی هستهای, خوشهبندی طیفی, سوپرپیکسل, kernel fuzzy clustering, Spectral Clustering, superpixel,
چکیده مقاله :
علم بینایی ماشین یکی از علومی است که در راستای افزایش کارایی حس بینایی در سیستمهای هوشمند به کار گرفته میشود. اولین گام در بسیاری از کاربردهای بینایی ماشین، قطعهبندی تصویر میباشد. در این پژوهش، روش خوشه بندی طیفی با سوپرپیکسل برای قطعه بندی تصویر ارائه شده است. با اعمال الگوریتم KFCM و با استفاده از توزیع عضویت در ماتریس بخش بندی، یک میزان تشابه فازی هسته ای جدید پیشنهاد داده ایم که سبب کاهش میزان حساسیت پارامتر مقیاس گذاری می شود. علاوه بر این، بهمنظور کاهش هزینه محاسباتی برای قطعه بندی تصویر، سوپر پیکسل را معرفی کرده ایم و یک اندازه گیری جدید برای ساخت ماتریس وابستگی خوشه بندی طیفی ارائه شده است. الگوریتمهای پیشنهادی بر روی 300 تصویر طبیعی متفاوت اعمال میشود و توسط شاخص های ارزیابی، مورد ارزیابی و مقایسه قرار میگیرند. نتایج حاصل شده از آزمایشات نسبت به دیگر روش های قطعه بندی مقایسه شده است و حاکی از برتری 4/3% دقت قطعه بندی الگوریتم پیشنهادی دارد و تمام شاخص های ارزیابی موردنظر پژوهش به میزان قابل قبولی افزایش پیداکردهاند.
One of the sciences in order to increase the efficiency of intelligent systems to be used in the visual sense, is Machine vision science. The first step in many applications in machine vision is image segmentation. Image segmentation, refers to the grouping of pixels in an image So that these pixels, the same qualities have with each other And the pixels adjacent parts, have different characteristics. The most important feature used in image segmentation, colors and features. In monochrome images, the gray level is considered as properties But color images, different color spaces used as a color feature. In this study, the color and texture features for image segmentation is considered. Clustering-based methods of are used in image segmentation methods and Gaussian function is similar measure in clustering images. Spectral clustering requires has high computational cost. To save time and accelerate the segmentation of images Using clustering with Super pixels will achieve optimal results And to achieve reliable results approximate and fuzzy algorithm is used. The proposed algorithm is applied on several standard image And the evaluation criteria,Evaluated and evaluated by the indicators are evaluated and compared. The results of the experiments were compared to other fragmentation methods, suggesting a 3.4% superiority in the segmentation accuracy of the proposed algorithm, and all the evaluation indicators of the study have increased to a satisfactory level.
]1[ صادقیان، پریا؛ بورجندی، معصومه؛ (۱۳۹۲)، بررسی روشهای قطعهبندی تصویر و مقایسه آنها، ششمین همایش فرا منطقهای پیشرفتهای نوین در علوم مهندسی، تنکابن، موسسه آموزش عالی آیندگان.
]2[ اکبری زاده، غلامرضا؛ رحمانی، معصومه؛ الگوریتم خوشه بندی طیفی مبتنی بر فاصله بافتی برای قطعهبندی تصاویر ماهوارهای SAR؛ فصلنامه صنایع الکترونیک 4؛ ۱۳۹۲.
[3] Du, H., Wang, Y., Dong, X., & Cheung, Y. M. (2015, August). Texture image segmentation using spectral clustering. In International Conference on Human-Computer Interaction (pp. 671-676). Springer International Publishing.
]4[ مدنی، سحر؛ امین غفاری، مینا؛ (۱۳۸۸)، یک روش خوشهبندی طیفی جهت یافتن ماژولهای مشابه در شبکههای پیچیده، پانزدهمین کنفرانس بینالمللی سالانه انجمن کامپیوتر ایران، تهران، انجمن کامپیوتر، مرکز توسعه فناوری نیرو.
]5[ فیاض، طیبه؛ طوسی، محمد امین (1394)، محاسبه پارامترهای خوشهبندی طیفی در تصاویر MRI با الگوریتم ژنتیک، هشتمین کنفرانس بینالمللی انجمن ایرانی تحقیق در عملیات، دانشگاه فردوسی مشهد.
[6] Yang, Y., Wang, Y., & Xue, X. (2016). A novel spectral clustering method with superpixels for image segmentation. Optik-International Journal for Light and Electron Optics, 127(1), 161-167.
[7] Li, Z., Wu, X. M., & Chang, S. F. (2012, June). Segmentation using superpixels: A bipartite graph partitioning approach. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on (pp. 789-796). IEEE.
]8[ اکبری زاده، غلامرضا؛ رحمانی، معصومه؛ (۱۳۹۲)، الگوریتم خوشهبندی طیفی مبتنی بر فاصله بافتی برای قطعهبندی تصاویر ماهوارهای SAR، فصلنامه صنایع الکترونیک 4.
[9] Liu, H., Zhao, F., & Jiao, L. (2012). Fuzzy spectral clustering with robust spatial information for image segmentation. Applied Soft Computing, 12(11), 3636-3647.
]10[ راشدی،عصمت؛ نظامآبادی پور، حسین؛ سریزدی؛ سعید، (1392)، افزایش دقت سامانههای بازیابی تصویر به کمک تطبیق ویژگیهای رنگ و بافت با استفاده از الگوریتم جستجوی گرانشی، دستگاههای هوشمند در مهندسی برق، سال چهارم، شماره سوم.
]11[ حسنپور، حمید؛ نادرنژاد؛ احسان، (۱۳۸۶)، استفاده از ساختار پیکسونی جهت بهبود روش Fuzzy C-meansدر قطعهبندی تصاویر، سیزدهمین کنفرانس سالانه انجمن کامپیوتر ایران، جزیره کیش، انجمن کامپیوتر، دانشگاه صنعتی شریف.
[12] Ferreira, M. R., & De Carvalho, F. D. A. (2014). Kernel fuzzy c-means with automatic variable weighting. Fuzzy Sets and Systems, 237, 1-46.
[13] Liu, M., Hou, Y., Guo, X., Huan, Z., & Yang, D. (2009, October). Texture classification using nonsubsampled contourlet transform and LS-SVM. In Image and Signal Processing, 2009. CISP'09. 2nd International Congress on(pp. 1-5). IEEE.
[14] Liu, H. Q., Jiao, L. C., & Zhao, F. (2010). Non-local spatial spectral clustering for image segmentation. Neurocomputing, 74(1), 461-471.
[15] Biswas, S., Ghoshal, D., & Hazra, R. (2016). A new algorithm of image segmentation using curve fitting based higher order polynomial smoothing. Optik-International Journal for Light and Electron Optics, 127(20), 8916-8925.
[16] Hsu, C. Y., & Ding, J. J. (2013, December). Efficient image segmentation algorithm using SLIC superpixels and boundary-focused region merging. In Information, Communications and Signal Processing (ICICS) 2013 9th International Conference on (pp. 1-5). IEEE.
[17] Figueroa, J. P., & Bykbaev, V. R. (2012). Image retrieval based on the combination of RGB and HSV's histograms and Colour Layout Descriptor. Ingenius: Revista de Ciencia y Tecnología, (7).
[18] Liu, M., Hou, Y., Guo, X., Huan, Z., & Yang, D. (2009, October). Texture classification using nonsubsampled contourlet transform and LS-SVM. In Image and Signal Processing, 2009. CISP'09. 2nd International Congress on (pp. 1-5). IEEE.
[19] Simon, P. (2012). A novel statistical fusion rule for image fusion and its comparison in non subsampled contourlet transform domain and wavelet domain. arXiv preprint arXiv:1205.1648.
[20] Xiaolan, H., Yili, W., & Yiwei, W. (2013). Texture feature extraction method combining nonsubsampled contour transformation with gray level co-occurrence matrix. Journal of multimedia, 8(6), 675-684.
[21] Gu, X., & Purvis, M. (2016, April). Image Segmentation with Superpixel Based Covariance Descriptor. In Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp. 154-165). Springer International Publishing.
[22] Chen, L., Chen, C. P., & Lu, M. (2011). A multiple-kernel fuzzy C-means algorithm for image segmentation. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 41(5), 1263-1274.
[23] Ferreira, M. R., & De Carvalho, F. D. A. (2014). Kernel fuzzy c-means with automatic variable weighting. Fuzzy Sets and Systems, 237, 1-46.
[24] Chaudhuri, K., Chung, F., & Tsiatas, A. (2012, June). Spectral clustering of graphs with general degrees in the extended planted partition model. In Conference on Learning Theory (pp. 35-1).
[25] Levinshtein, A., Stere, A., Kutulakos, K. N., Fleet, D. J., Dickinson, S. J., & Siddiqi, K. (2009). Turbopixels: Fast superpixels using geometric flows. IEEE transactions on pattern analysis and machine intelligence, 31(12), 2290-2297.
[26] Jia, H., Ding, S., & Du, M. (2015). Self-tuning p-Spectral clustering based on shared nearest neighbors. Cognitive Computation, 7(5), 622-632.
_||_