رویکردی جدید برای انتقال موج میلیمتری در سیستمهای مایمو انبوه مبتنی بر تکنولوژی دسترسی چندگانه غیرمتعامد
پوریا صالحی
1
(
گروه برق، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
)
ناصر پرهیزگار
2
(
گروه برق، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
)
فرشاد پسران
3
(
گروه برق، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
)
کلید واژه: دسترسی چندگانه با تقسیم جاگذاری, آنتنهای توزیع شده, دسترسی چندگانه غیرمتعامد, موج میلیمتری, مایمو انبوه,
چکیده مقاله :
باتوجهبه رشد ترافیک در شبکههای بیسیم، ارائه تکنیکهای جدید برای تحقق اتصالگسترده، پهنای باند بیشتر و افزایش دسترسی به طیف را ضروری میسازد. ادغام معماری چندورودیچندخروجی (MIMO) انبوه و تکنولوژی دسترسی چندگانه غیرمتعامد (NOMA) بهعنوان راهحلی امیدوارکننده برای گرهگشایی تقاضای روزافزون نرخ داده از طریق گسترش فرکانس ارتباطی به باند موجمیلیمتری و بهبود عملکرد سیستم در نظر گرفته میشود. در این پژوهش، یک روش انتقال موجمیلیمتری جدید با استفاده از فناوری NOMA و مایمو انبوه با ساختار مشارکتی و سیستم آنتن توزیع شده معرفی شده است. مسئله بهینهسازی نرخ مجموع در سیستم پیشنهادی تحت محدودیتهای همتوان و مجموع توان ایستگاه پایه در نظر گرفته شده است. بهمنظور کاهش پیچیدگی روش پیشنهادی، از روش ترکیب حداکثر نسبت بر اساس استراتژی تکراری (MRC-RS) استفاده شد. مسئله اصلی در دستیابی به بهره چندکاربره در سیستمهای مایمو انبوه وابستگی به اطلاعات وضعیت کانال است. برای حل این مسئله، دسترسی چندگانه با تقسیم جاگذاری (IDMA) و تخمین کانال به کمک داده (DACE) ارائه شد. نتایج شبیهسازی نشان میدهد که سیستم پیشنهادی از نظر نرخ مجموع، بهرهوری انرژی و بهرهوری طیف به ترتیب حدود 10%، 5% و 9% نسبت به سایر روشهای قبلی بهتر عمل میکند. همچنین عملکرد روش پیشنهادی در برابر مسئله آلودگی پایلوت و کاهش پیچیدگی در گیرنده در مقایسه با روشهای قبلی حدود 21% بهبود یافته است.
چکیده انگلیسی :
With the growth of wireless network traffic, it is essential to provide new techniques to achieve wide connectivity, greater bandwidth, and increased access to the spectrum. The integration of massive Multiple-Input Multiple-Output (M-MIMO) architecture and non-Orthogonal Multiple Access (NOMA) technology is considered a promising solution for solve the increasing demand for data rate through the expansion of communication frequency to the millimeter-wave (mmWave) band and improving the system performance. In this study, we introduce a new mmWave transmission method using NOMA and MIMO technology with cooperative structure and distributed antenna system (DAS). The optimization problem of the sum rate in the proposed system is considered under the equal power constraints (EPC) and the sum power constraint (SPC) of the base station (BS). In order to reduce the complexity of the proposed method, the maximum ratio combining based on repetitive strategy (MRC-RS) was used. The main problem in achieving multi-user efficiency in M-MIMO systems is dependence on channel state information (CSI). To solve this problem, interleave division multiple access (IDMA) and data-aided channel estimation (DACE) are proposed. The simulation results show that the proposed system performs better than other previous methods in terms of sum-rate, energy efficiency (EE), and spectrum efficiency (SE) by about 10%, 5%, and 9%, respectively. Also, the performance of the proposed method against the problem of pilot contamination and reducing the complexity in the receiver has improved by about 21% compared to the previous methods.
ارائه رویکردی جدید در آنتنهای توزیع شده و مشارکتی مبتنی بر ساختار انتقال موج میلیمتری.
بهبود عملکرد سیستم در بهرهوری انرژی و بهرهوری طیف در روش پیشنهادی در مقایسه با روشهای قبلی.
اعمال روش IMDA در ساختارهای مشارکتی و توزیع شده و تحلیل عملکرد سیستم بر حسب BER.
کاهش پیچیدگی روش پیشنهادی، با استفاده از روش ترکیب حداکثر نسبت بر اساس استراتژی تکراری (MRC-RS).
مقاومت در برابر آلودگی پایلوت در سیستم پیشنهادی و کاهش پیچیدگی در گیرنده.
[1] J. C. Lin, “Synchronization Requirements for 5G: An Overview of Standards and Specifications for Cellular Networks,” IEEE Vehicular Technology Magazine, vol. 13, no. 3, pp. 91-99, Sept. 2018, doi: 10.1109/MVT.2018.2813339.
[2] M. Abbasi, A. Shahraki, H. R. Barzegar and C. Pahl, “Synchronization Techniques in Device to Device- and Vehicle to Vehicle-Enabled Cellular Networks: A survey,” Computers & Electrical Engineering, vol. 90, p. 106955, Jan. 2021, doi: 10.1016/j.compeleceng.2020.106955.
[3] H. Fourati, R. Maaloul, L. Chaari and M. Jmaiel, “Comprehensive survey on self-organizing cellular network approaches applied to 5G networks,” Computer Networks, vol. 199, p. 108435, Sept. 2021, doi: 10.1016/j.comnet.2021.108435.
[4] A. Azab, M. Khasawneh, S. Alrabaee, K. R. Choo and M. Sarsour, “Network traffic classification: Techniques, datasets, and challenges,” Digital Communications and Networks, Sept. 2022, doi: 10.1016/j.dcan.2022.09.009.
[5] A. Akbar, S. Jangsher and F. A. Bhatti, “NOMA and 5G emerging technologies: A survey on issues and solution techniques,” Computer Networks, vol. 190, p. 107950, May 2021, doi: 10.1016/j.comnet.2021.107950.
[6] U. Ghafoor, M. Ali, H. Z. Khan, A. M. Siddiqui and M. Naeem, “NOMA and future 5G & B5G wireless networks: A paradigm,” Journal of Network and Computer Applications, vol. 204, p. 103413, Aug. 2022, doi: 10.1016/j.jnca.2022.103413.
[7] S. C. Rajendran and P. Sudheesh, “Sum Data Rate and Energy Efficiency optimization of MIMO NOMA using CDNN,” Proceeding of the IEEE/ICCCSP, pp. 1-7, Chennai, India, May 2021, doi: 10.1109/ICCCSP52374.2021.9465525.
[8] U. Ghafoor, M. Ali, H. Z. Khan, A. M. Siddiqui, M. Naeem and I. Rashid, “Energy Efficiency Optimization for Hybrid NOMA based Beyond 5G Heterogeneous Networks,” Proceeding of the IEEE/VTC2021-Fall, pp. 1-5, Sept. 2021, doi: 10.1109/VTC2021-Fall52928.2021.9625334.
[9] Z. Ding, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan and V. K. Bhargava, “A Survey on Non-Orthogonal Multiple Access for 5G Networks: Research Challenges and Future Trends,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 10, pp. 2181-2195, Oct. 2017, doi: 10.1109/JSAC.2017.2725519.
[10] Y. Dursun, K. Wang and Z. Ding, “Secrecy sum rate maximization for a MIMO-NOMA uplink transmission in 6G networks,” Physical Communication, vol. 53, p. 101675, Aug. 2022, doi: 10.1016/j.phycom.2022.101675.
[11] M. Zeng et al., “On the Sum Rate of MIMO-NOMA and MIMO-OMA Systems,” IEEE Wireless Communications Letters, vol. 6, no. 4, pp. 534-537, Aug. 2017, doi: 10.1109/LWC.2017.2712149.
[12] S. Rangan, T. S. Rappaport and E. Erkip, “Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges,” in Proceedings of the IEEE, vol. 102, no. 3, pp. 366-385, Feb. 2014, doi: 10.1109/JPROC.2014.2299397.
[13] B. De Beelde, M. Vantorre, G. Castellanos, M. Pickavet and W. Joseph, “MmWave Physical Layer Network Modeling and Planning for Fixed Wireless Access Applications,” Sensors, vol. 23, no. 4, pp. 1-24, Feb. 2023, doi: 10.3390/s23042280.
[14] R. H. Y. Perdana, T. V. Nguyen and B. An, “Adaptive User Pairing in Multi-IRS-aided Massive MIMO-NOMA Networks: Spectral Efficiency Maximization and Deep Learning Design,” IEEE Transactions on Communications, vol. 71, no. 7, pp. 4377-4390, July 2023, doi: 10.1109/TCOMM.2023.3277533.
[15] A. Gholamrezaee and H. Farrokhi, “Spectrum-efficient mode selection and fair resource allocation for D2D-enabled uplink/downlink MC-NOMA networks,” Digital Signal Processing, vol. 137, p. 104050, June 2023, doi: 10.1016/j.dsp.2023.104050.
[16] S. Wang, Y. Long, R. Ruby and X. Fu, “Clustering and power optimization in mmWave massive MIMO-NOMA systems,” Physical Communication, vol. 49, p. 101469, Dec. 2021, doi: 10.1016/j.phycom.2021.101469.
[17] Ericsson Mobility Report, Mobile data traffic outlook, June 2023 white paper at https://www.ericsson.com/en/reports-and-papers/mobility-report/reports.
[18] S. Trankatwar and P. Wali, “Subchannel and power optimization for sum rate maximization in downlink multicarrier NOMA networks,” Physical Communication, vol. 58, p. 102050, June 2023, doi: 10.1016/j.phycom.2023.102050.
[19] A. Pandey and P. Kumar, “Performance analysis of dynamic ordered NOMA system,” Digital Signal Processing, vol. 133, p. 103865, March 2023, doi: 10.1016/j.dsp.2022.103865.
[20] J. L. Jacob, C. A. Pendeza Martinez, A. L. Machado Martinez and T. Abrão, “Non-linear biobjective EE-SE optimization for NOMA-MIMO systems under user-rate fairness and variable number of users per cluster,” AEU–International Journal of Electronics and Communications, vol. 138, p. 153870, Aug. 2021, doi: 10.1016/j.aeue.2021.153870.
[21] Y. Zhang et al., “Secure beamforming designs for maximizing secrecy sum rate in MISO-NOMA networks,” Digital Communications and Networks, May 2023, doi: 10.1016/j.dcan.2023.04.001.
[22] S. Rajoria, A. Trivedi and W. W. Godfrey, “Energy efficiency optimization for MM-NOMA heterogeneous network with wireless backhauling and energy harvesting,” AEU - International Journal of Electronics and Communications, vol. 159, p. 154477, Feb. 2023, doi: 10.1016/j.aeue.2022.154477.
[23] M.R. Ghavidel Aghdam, B. Mozaffari Tazehkand, R. Abdolee and M. Mohassel Feghhi, “Space-time block coding in millimeter wave large-scale MIMO-NOMA transmission scheme,” International Journal of Communication Systems, vol. 33, no. 9, p. e4392, 2020, doi: 10.1002/dac.4392.
[24] M.R. Ghavidel Aghdam, B. Mozaffari Tazehkand and R. Abdolee, “Joint Optimal Power Allocation and Beamforming for MIMO-NOMA in mmWave Communications,” IEEE Wireless Communications Letters, vol. 11, no. 5, pp. 938-941, 2022, doi: 10.1109/LWC.2022.3150217.
[25] B. Wang, L. Dai, Z. Wang, N. Ge and S. Zhou, “Spectrum and Energy-Efficient Beamspace MIMO-NOMA for Millimeter-Wave Communications Using Lens Antenna Array,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 10, pp. 2370-2382, Oct. 2017, doi: 10.1109/JSAC.2017.2725878.
[26] A. Meijerink and A. F. Molisch, “On the Physical Interpretation of the Saleh–Valenzuela Model and the Definition of Its Power Delay Profiles,” IEEE Transactions on Antennas and Propagation, vol. 62, no. 9, pp. 4780-4793, July 2014, doi: 10.1109/TAP.2014.2335812.
[27] S. Li, J. Sun, S. Ma and H. Zhou, “Parameterization of channel characteristics based on statistical analysis at refuge chamber,” Physical Communication, vol. 48, p. 101429, Oct. 2021, doi: 10.1016/j.phycom.2021.101429.
[28] P. Salehi, N. Parhizgar and F. Pesaran, “A New Cooperative and Distributed Antenna Structure in Massive MIMO-NOMA Based on mmWave Transmission Scheme,” Wireless Communications and Mobile Computing, vol. 2021, p. 6717077, Oct. 2021, doi: 10.1155/2021/6717077.
[29] L. Dai, “An Uplink Capacity Analysis of the Distributed Antenna System (DAS): From Cellular DAS to DAS with Virtual Cells,” IEEE Transactions on Wireless Communications, vol. 13, no. 5, pp. 2717-2731, May 2014, doi: 10.1109/TWC.2014.033114.130557.
[30] Z. Liu and L. Dai, “A Comparative Study of Downlink MIMO Cellular Networks With Co-Located and Distributed Base-Station Antennas,” IEEE Transactions on Wireless Communications, vol. 13, no. 11, pp. 6259-6274, May 2014, doi: 10.1109/TWC.2014.2355833.
[31] D. Lin, Z. Shi-dong and Y. Yan, “Capacity with MRC-based macrodiversity in CDMA distributed antenna systems,” Proceeding of the IEEE/GLOBECOM, vol. 1, pp. 987-991, Nov. 2002, doi: 10.1109/GLOCOM.2002.1188225.
[32] D. Lin, Z. Shidong and Y. Yan, “Capacity analysis in CDMA distributed antenna systems,” IEEE Transactions on Wireless Communications, vol. 4, no. 6, pp. 2613-2620, Nov. 2005, doi: 10.1109/TWC.2005.858011.
[33] N. Lee, D. Morales-Jimenez, A. Lozano and R. W. Heath, “Spectral Efficiency of Dynamic Coordinated Beamforming: A Stochastic Geometry Approach,” IEEE Transactions on Wireless Communications, vol. 14, no. 1, pp. 230-241, Jan. 2015, doi: 10.1109/TWC.2014.2337305.
[34] K. Humadi, I. Trigui, W. P. Zhu and W. Ajib, “Dynamic Base Station Clustering in User-Centric mmWave Networks: Performance Analysis and Optimization,” IEEE Transactions on Communications, vol. 69, no. 7, pp. 4847-4861, July 2021, doi: 10.1109/TCOMM.2021.3070357.
[35] J. Joung, Y. K. Chia and S. Sun, “Energy-Efficient, Large-Scale Distributed-Antenna System (L-DAS) for Multiple Users,” IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 954-965, Oct. 2014, doi: 10.1109/JSTSP.2014.2309942.
[36] J. Wang and L. Dai, “Downlink Rate Analysis for Virtual-Cell Based Large-Scale Distributed Antenna Systems,” IEEE Transactions on Wireless Communications, vol. 15, no. 3, pp. 1998-2011, March 2016, doi: 10.1109/TWC.2015.2497678.
[37] S. Deshpande, P. Sharma, M. Aggarwal and S. Ahuja, “Mitigating pilot contamination in Rician faded massive MIMO 5G systems using enhanced zero forcing precoding and ring partitioning,” Physical Communication, vol. 49, p. 101467, Dec. 2021, doi: 10.1016/j.phycom.2021.101467.
[38] T. L. Marzetta, “Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas,” IEEE Transactions on Wireless Communications, vol. 9, no. 11, pp. 3590-3600, Nov. 2010, doi: 10.1109/TWC.2010.092810.091092.
[39] P. Li, L. Lihai, W. Keying and W. K. Leung, “Interleave division multiple-access,” IEEE Transactions on Wireless Communications, vol. 5, no. 4, pp. 938-947, April 2006, doi: 10.1109/TWC.2006.1618943.
[40] Y. Hu, C. Liang, L. Liu, C. Yan, Y. Yuan and L. Ping, “Interleave-Division Multiple Access in High Rate Applications,” IEEE Wireless Communications Letters, vol. 8, no. 2, pp. 476-479, April 2019, doi: 10.1109/LWC.2018.2876538.
[41] C. Xu, Y. Hu, C. Liang, J. Ma and L. Ping, “Massive MIMO, Non-Orthogonal Multiple Access and Interleave Division Multiple Access,” in IEEE Access, vol. 5, pp. 14728-14748, July 2017, doi: 10.1109/ACCESS.2017.2725919.
[42] D. Raphaeli and Y. Zarai, “Combined turbo equalization and turbo decoding,” IEEE Communications Letters, vol. 2, no. 4, pp. 107-109, April 1998, doi: 10.1109/4234.664220.
[43] Z. Pan, C. Xie, H. Wang, Y. Wei and D. Guo, “Blind Turbo Equalization of Short CPM Bursts for UAV-Aided Internet of Things,” Sensors, vol. 22, no. 17, Aug. 2022, doi: 10.3390/s22176508.
[44] J. Ma and L. Ping, “Data-Aided Channel Estimation in Large Antenna Systems,” IEEE Transactions on Signal Processing, vol. 62, no. 12, pp. 3111-3124, June 2014, doi: 10.1109/TSP.2014.2321120.
[45] I. Khan, M. Cheffena and M. M. Hasan, “Data Aided Channel Estimation for MIMO-OFDM Wireless Systems Using Reliable Carriers,” in IEEE Access, vol. 11, pp. 47836-47847, April 2023, doi: 10.1109/ACCESS.2023.3269659.
[46] A. Belhabib, J. Amadid, M. Boulourd, M. R. Hassani and A. Zeroual, “Pilot Contamination Suppression Based Coordination in Multi-cell Massive MIMO Systems,” Wireless Personal Communications, vol. 125, no. 2, pp. 1883-1894, Feb. 2022, doi: 10.1007/s11277-022-09638-6.
[47] X. Gao, L. Dai, Z. Chen, Z. Wang and Z. Zhang, “Near-Optimal Beam Selection for Beamspace MmWave Massive MIMO Systems,” IEEE Communications Letters, vol. 20, no. 5, pp. 1054-1057, March 2016, doi: 10.1109/LCOMM.2016.2544937.
[48] M. S. Ali, H. Tabassum and E. Hossain, “Dynamic User Clustering and Power Allocation for Uplink and Downlink Non-Orthogonal Multiple Access (NOMA) Systems,” in IEEE Access, vol. 4, pp. 6325-6343, Aug. 2016, doi: 10.1109/ACCESS.2016.2604821.
[49] L. Dai, B. Wang, M. Peng and S. Chen, “Hybrid Precoding-Based Millimeter-Wave Massive MIMO-NOMA With Simultaneous Wireless Information and Power Transfer,” IEEE Journal on Selected Areas in Communications, vol. 37, no. 1, pp. 131-141, Jan. 2019, doi: 10.1109/JSAC.2018.2872364.
[50] D. Tse, P. Viswanath, Fundamentals of Wireless Communication. Cambridge: Cambridge University Press, 2005.