تحلیل یک مدولاتور الکترواپتیک بر پایه کاواک نانو پرتو بلور فوتونی تکبعدی همراه با ساختار متناوب گرافن بر اکسید آلومینیوم
محورهای موضوعی : مهندسی الکترونیکمظفرالدین فردوسیان طهرانی 1 , رحیم غیور 2 * , مریم محیط پور 3
1 - دانشکده مهندسی برق- واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
2 - دانشکده مهندسی برق - واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
3 - دانشکده مهندسی برق- واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
کلید واژه: گرافن, اکسید آلومینیوم, مدولاتور, کاواک نانوپرتو بلور فوتونی,
چکیده مقاله :
در این مقاله، ما یک مدولاتور الکترو - اپتیک بر اساس جذب گرافن ارائه میکنیم. در این ساختار، گرافن بر روی اکسید آلومینیوم قرار گرفته که ساختار به صورت متناوب تکرار میشود. این ساختار متناوب گرافن بر اکسید آلومینیوم در داخل یک حفره نیماستوانهای، درون یک کاواک نانو پرتو بلور فوتونی یک بعدی قرار گرفته است. برخلاف مقالات قبلی که کاواک نانو پرتو بلور فوتونی یک بعدی شامل حفرههای استوانهای بوده و نواحی مختلف با تغییر شعاع این حفرهها ایجاد میشد، در این ساختار از حفرههای نیمه استوانهای استفاده شده و با چرخش این نیماستوانهها، نواحی مختلف ساختار کاواک نانو پرتو بلور فوتونی ایجاد میشود. این نوع بلور فوتونی دارای ضریب کیفیت بالایی است. همچنین این نوع مدولاتورها پس از ساخت به فضای کمی نیاز دارند، بنابراین گزینه بسیار مناسبی برای مدارهای مجتمع هستند. در این مقاله از روش دامنه محدود در حوزه زمان - سهبعدی برای تحلیل استفاده شده است. در این مدولاتور مشاهده میشود که با تغییر ولتاژ بایاس میزان پیک جذب و همچنین طول موج رزونانس آن تغییر میکند. در نتیجه این تغییرات، به عمق مدولاسیونی در حدود ۷ دسیبل دست مییابیم. ساختار پیشنهادی ما میتواند کاربردهای بالقوهای در مدارهای مجتمع نوری، بهویژه در فرکانسهای مخابراتی داشته باشد.
In this paper, we present an electro-optical modulator based on graphene absorption. In this structure, graphene is placed on aluminum oxide, the structure of which is repeated alternately. This alternating structure of graphene on aluminum oxide is located inside a semi-cylindrical cavity in a 1-dimensional photonic crystal nanobeam cavity. Unlike previous articles, which consisted of cylinder holes and different areas in the nanobeam cavity is formed by changing the radius of the holes, in this structure, semi-cylinder holes have been used and, different areas are formed by rotating these semi-cylinders. This type of crystal photonics has a high quality factor. Also, this type of modulator requires little space after construction, so they are a very good option for integrated circuits. In this paper, three-dimensional finite-difference time-domain method is used for analysis. In this modulator, it is observed that by changing the bias voltage, the amount of absorption peak and also its resonance wavelength are changed. As a result of these changes, we achieve a modulation depth of about 7dB. Our proposed structure can have potential applications in integrated optical circuits, especially in telecommunication frequencies.
[1] J. Liu, G. Xu, F. Liu, I. Kityk, X. Liu, and Z. Zhen, “Recent advances in polymer electro-optic modulators,” Rsc. Adv., vol. 5, no. 21, pp. 15784–15794, 2015 , doi: 10.1039/C4RA13250E.
[2] A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev., vol. 12, no. 4, Art. no. 1700256, 2018, doi: 10.1002/lpor.201700256.
[3] Y. Sha, J. Wu, Z. T. Xie, H. Y. Fu, Q. Li“Comparison study of multi-slot designs in epsilon-near-zero waveguide-based electro-optical modulators,” IEEE Photonic J., vol.13, no.3, 2021, doi: 10.1109/JPHOT.2021.3084943.
[4] M. G. Wood et al., "Gigahertz speed operation of epsilon-near-zero silicon photonic modulators", Optica, vol. 5, no. 3, pp. 233-236, 2018 , doi: 10.1364/OPTICA.5.000233.
[5] M. Li, L. Wang, X. Li, X. Xiao, and S. Yu, “Silicon intensity Mach-Zehnder modulator for single lane 100 Gb/s applications,” Photon. Res., vol. 6, no. 2, pp. 109–116, 2018, doi: 10.1364/PRJ.6.000109.
[6] S. Sun, M. Xu, M. He, S. Gao, X. Zhang, L. Zhou and L. Liu “Folded Heterogeneous Silicon and Lithium Niobate Mach–Zehnder Modulators with Low Drive Voltage,” Micromachines, vol. 12, no. 7, 2021, doi: 10.3390/mi12070823.
[7] C. Haffner et al., “Low-loss plasmon-assisted electro-optic modulator,” Nature, vol. 556, no. 7702, Art. no. 483, 2018 , doi: 10.1038/s41586-018-0031-4.
[8] A. Moazami, M. Hashemi and N. Cheraghi Shirazi “High Efficiency Tunable graphene-based plasmonic filter in the THz frequency range,” Plasmonics, vol.14, pp.359–363. 2019 , doi:10.1007/s11468-018-0812-5.
[9] D. A. B. Miller, “Attojoule Optoelectronics for Low-Energy Information Processing and Communications,” J. Light. Technol., vol. 35, no. 3, pp. 346–396, 2017, doi: 10.1109/JLT.2017.2647779.
[10] D. Yang, A. Wang, J. H. Chen, X. C. Yu, C. Lan, Y. Ji and Y. F. Xiao., “Real-time monitoring of hydrogel phase transition in an ultrahigh Q microbubble resonator,” Photon. Res., vol. 8, no. 4, pp. 497–502, 2020 , doi: 10.1364/PRJ.380238.
[11] J. Wang et al., “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express, vol. 23, no. 18, pp. 23072–23078, 2015, doi: 10.1364/OE.23.023072.
[12] C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Loncar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express, vol. 26, no. 2, pp. 1547–1555, 2018, doi: 10.1364/OE.26.001547.
[13] K. Alexander et al., “Nanophotonic Pockels modulators on a silicon nitride platform,” Nat. Commun, vol. 9, Art. no. 3444, 2018 ,doi:10.1038/s41467-018-05846-6.
[14] J. Li, Z. Li, J. Yang, Y. Zhang and C. Ren “Microfiber Fabry-Perot interferometer used as a temperature sensor and an optical modulator,” Optics & Laser Technology, 2020,doi: 10.1016/j.optlastec.2020.106296.
[15] C. Y. Lin et al., “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett., vol. 97, no. 9, Art. no. 194. 2010, doi: 10.1117/1.JNP.13.036005.
[16] S. Jain, S. Rajput, V. Kaushik and M. Kumar “High speed optical modulator based on silicon slotted-rib waveguide,” Optics Communications, 2019 ,doi: 10.1016/j.optcom.2018.10.028.
[17] H. Liu, P. Liu, L. Bian, C. Liu and Q. H. Zhou, “Electro-optic modulator side-coupled with a photonic crystal nanobeam loaded graphene/Al2O3 multilayer stack,” Opt. Mater. Express, vol. 8, no. 4, pp. 761–774, 2018 , doi:10.1364/OME.8.000761.
[18] D. Witmer, J. T. Hill, and A. H. Safavi-Naeini, “Design of nanobeam photonic crystal resonators for a silicon-onlithium-niobate platform,” Opt. Express, vol. 24, no. 6, pp. 5876–5885, 2016, doi: 10.1364/OE.24.005876.
[19] J. D. Witmer, J. A. Valery, and P. Arrangoiz-Arriola, “High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate,” Sci. Rep., vol. 7, Art. no. 46313,2017 , doi:10.1038/srep46313.
[20] D. Yang, H. Tian, Y Ji, and Q. Quan, “Design of simultaneous high-Q and high-sensitivity photonic crystal refractive index sensors,” JOSA B, vol. 30, no. 8, pp. 2027–2031. 2013 , doi: 10.1364/JOSAB.30.002027.
[21] W. S. Fegadolli, J. E. Oliveira, V. R. Almeida, and A. Scherer, “Compact and low power consumption tunable photonic crystal nanobeam cavity,” Opt. Express , vol.21, no.3, pp.3861–3871, 2013, doi: 10.1364/OE.21.003861.
[22] L. A. Bian, P. G. Liu, Z. Z. Han, G. S. Li, J. Mao, and Z. Lu, “Near-unity absorption in a graphene-embedded defective photonic crystals array,” Superlattices Microstruct. , vol.104, pp.461–469, 2017, doi: 10.1016/j.spmi.2017.03.008.
[23] W. Fan and X. Chen, “Polarization-insensitive tunable multiple electromagnetically induced transparencies analogue in terahertz graphene metamaterial,” Opt. Mater. Express, vol.6, no.8, pp.2607–2615, 2016, doi: 10.1364/OME.6.002607.
[24] T. Pan, C. Qiu, J. Wu, X. Jiang, B. Liu, Y. Yang, H. Zhou, R. Soref, and Y. Su, “Analysis of an electro-optic modulator based on a graphene-silicon hybrid 1D photonic crystal nanobeam cavity,” Opt. Express , vol.23, no.18, pp.23357–23364, 2015 , doi: 10.1364/OE.23.023357.
[25] X. Yin, T. Zhang, L. Chen, and X. Li, “Ultra-compact TE-pass polarizer with graphene multilayer embedded in a silicon slot waveguide,” Opt. Lett. vol.40, no.8, pp.1733–1736, 2015 , doi: 10.1364/OL.40.001733.
[26] A. B. Kuzmenko, L. Benfatto, E. Cappelluti, I. Crassee, D. van der Marel, P. Blake, K. S. Novoselov, and A. K. Geim, “Gate tunable infrared phonon anomalies in bilayer graphene,” Phys. Rev. Lett. , vol.103, no.11, p.116804, 2009 , doi: 10.1103/PhysRevLett.103.116804.
[27] M. Tamagnone, J. S. Gomez-Diaz, J. R. Mosig, and J. Perruisseau-Carrier, “Reconfigurable THz plasmonic antenna concept using a graphene stack,” Appl. Phys. Lett. ,vol.101, no.21, p.214102, 2012, doi: 10.1364/OE.21.015490.
[28] J. S. Gomez-Diaz, C. Moldovan, S. Capdevila, J. Romeu, L. S. Bernard, A. Magrez, A. M. Ionescu, and J. Perruisseau-Carrier, “Self-biased reconfigurable graphene stacks for terahertz plasmonics,” Nat. Commun. , vol.6, no.1, p. 6334, 2015, doi:10.1038/ncomms7334.
[29] H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. , vol.7, no.5, pp.330–334, 2012 , doi: 10.1038/nnano.2012.59.
[30] M. F. Tehrani, R. Ghayour, M. Mohitpour “High-Q and high-absorption photonic crystal nanobeam cavity based on semi-cylinders of air coupled with graphene” Appl. Phys. A., vol.128, no.1,2022, doi: 10.1007/s00339-021-05088-2.
[31] S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, “Thermal conductivity of isotopically modified graphene,” Nat. Mater. , vol.11, no.3, pp.203–207, 2012 ,doi: 10.1038/nmat3207.
[32] M Berahman A.R Malahzadeh, “The Numerical Modeling for Electrical Behavior of Graphene Nanoribbon in the Present of Optical Detector,” Journal of Communication Engineering, vol.7, no.25,2017(in persian),
[33] M. Farhat, C. Rockstuhl, and H. Bağcı, “A 3D tunable and multi-frequency graphene plasmonic cloak,” Opt. Express, vol.21, no.10, pp.12592–12603, 2013 , doi: 10.1364/OE.21.012592.
[34] J. A. Crosse, X. Xu, M. S. Sherwin, and R. B. Liu, “Theory of low-power ultra-broadband terahertz sideband generation in bi-layer graphene,” Nat. Commun., vol.5, no.1, p.4854, 2014 ,doi: 10.1038/ncomms5854 .
[35] K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature, vol.490, pp.192–200, 2012 , doi: 10.1038/nature11458.
[36] Z. Su, J. Yin, and X. Zhao, “Terahertz dual-band metamaterial absorber based on graphene/MgF2 multilayer structures,” Opt. Express, vol.23, no.2, pp.1679–1690, 2015, doi: 10.1364/OE.23.001679.
[37] A. Majumdar, J. Kim, J. Vuckovic, and F. Wang, “Electrical control of silicon photonic crystal cavity by graphene,” Nano Lett. , vol.13, no.2, pp.515–518, 2013, doi: 10.1021/nl3039212.
[38] H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks.” Nature Nanotechnology ,vol.7, pp.330–334. 2012 , doi:10.1038/nnano.2012.59.
[39] Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Optics Express , vol. 19, no. 19, pp. 18529-18542 ,2011,doi:10.1364/OE.19.018529.
[40] M. Fan, H. Yang, P. Zheng, G. Hu, B. Yun, and Y. Cui, “Multilayer graphene electro-absorption optical modulator based on double-stripe silicon nitride waveguide” Optics Express, vol. 25, no. 18, pp. 21619-21629, 2017 ,doi: 10.1364/OE.25.021619.
[41] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic Crystals Molding the Flow of Light, Princeton University, 198–210, 2008.
[42] J. R. Piper and S. H. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics , vol.1, no.4, pp.347–353, 2014, doi: 10.1021/ph400090p.
[43] M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express , vol.21, no.6, pp.7614–7632, 2013 ,doi: 10.1364/OE.21.007614.
[44] X. Gan et al., “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett., vol. 13, no. 2, pp. 691–696, 2013 ,doi: 10.1021/nl304357u.
[45] N. K. Emani, T. F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett., vol.14, no.1, pp.78–82, 2014 , doi: 10.1021/nl403253c.
_||_[1] J. Liu, G. Xu, F. Liu, I. Kityk, X. Liu, and Z. Zhen, “Recent advances in polymer electro-optic modulators,” Rsc. Adv., vol. 5, no. 21, pp. 15784–15794, 2015 , doi: 10.1039/C4RA13250E.
[2] A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev., vol. 12, no. 4, Art. no. 1700256, 2018, doi: 10.1002/lpor.201700256.
[3] Y. Sha, J. Wu, Z. T. Xie, H. Y. Fu, Q. Li“Comparison study of multi-slot designs in epsilon-near-zero waveguide-based electro-optical modulators,” IEEE Photonic J., vol.13, no.3, 2021, doi: 10.1109/JPHOT.2021.3084943.
[4] M. G. Wood et al., "Gigahertz speed operation of epsilon-near-zero silicon photonic modulators", Optica, vol. 5, no. 3, pp. 233-236, 2018 , doi: 10.1364/OPTICA.5.000233.
[5] M. Li, L. Wang, X. Li, X. Xiao, and S. Yu, “Silicon intensity Mach-Zehnder modulator for single lane 100 Gb/s applications,” Photon. Res., vol. 6, no. 2, pp. 109–116, 2018, doi: 10.1364/PRJ.6.000109.
[6] S. Sun, M. Xu, M. He, S. Gao, X. Zhang, L. Zhou and L. Liu “Folded Heterogeneous Silicon and Lithium Niobate Mach–Zehnder Modulators with Low Drive Voltage,” Micromachines, vol. 12, no. 7, 2021, doi: 10.3390/mi12070823.
[7] C. Haffner et al., “Low-loss plasmon-assisted electro-optic modulator,” Nature, vol. 556, no. 7702, Art. no. 483, 2018 , doi: 10.1038/s41586-018-0031-4.
[8] A. Moazami, M. Hashemi and N. Cheraghi Shirazi “High Efficiency Tunable graphene-based plasmonic filter in the THz frequency range,” Plasmonics, vol.14, pp.359–363. 2019 , doi:10.1007/s11468-018-0812-5.
[9] D. A. B. Miller, “Attojoule Optoelectronics for Low-Energy Information Processing and Communications,” J. Light. Technol., vol. 35, no. 3, pp. 346–396, 2017, doi: 10.1109/JLT.2017.2647779.
[10] D. Yang, A. Wang, J. H. Chen, X. C. Yu, C. Lan, Y. Ji and Y. F. Xiao., “Real-time monitoring of hydrogel phase transition in an ultrahigh Q microbubble resonator,” Photon. Res., vol. 8, no. 4, pp. 497–502, 2020 , doi: 10.1364/PRJ.380238.
[11] J. Wang et al., “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express, vol. 23, no. 18, pp. 23072–23078, 2015, doi: 10.1364/OE.23.023072.
[12] C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Loncar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express, vol. 26, no. 2, pp. 1547–1555, 2018, doi: 10.1364/OE.26.001547.
[13] K. Alexander et al., “Nanophotonic Pockels modulators on a silicon nitride platform,” Nat. Commun, vol. 9, Art. no. 3444, 2018 ,doi:10.1038/s41467-018-05846-6.
[14] J. Li, Z. Li, J. Yang, Y. Zhang and C. Ren “Microfiber Fabry-Perot interferometer used as a temperature sensor and an optical modulator,” Optics & Laser Technology, 2020,doi: 10.1016/j.optlastec.2020.106296.
[15] C. Y. Lin et al., “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett., vol. 97, no. 9, Art. no. 194. 2010, doi: 10.1117/1.JNP.13.036005.
[16] S. Jain, S. Rajput, V. Kaushik and M. Kumar “High speed optical modulator based on silicon slotted-rib waveguide,” Optics Communications, 2019 ,doi: 10.1016/j.optcom.2018.10.028.
[17] H. Liu, P. Liu, L. Bian, C. Liu and Q. H. Zhou, “Electro-optic modulator side-coupled with a photonic crystal nanobeam loaded graphene/Al2O3 multilayer stack,” Opt. Mater. Express, vol. 8, no. 4, pp. 761–774, 2018 , doi:10.1364/OME.8.000761.
[18] D. Witmer, J. T. Hill, and A. H. Safavi-Naeini, “Design of nanobeam photonic crystal resonators for a silicon-onlithium-niobate platform,” Opt. Express, vol. 24, no. 6, pp. 5876–5885, 2016, doi: 10.1364/OE.24.005876.
[19] J. D. Witmer, J. A. Valery, and P. Arrangoiz-Arriola, “High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate,” Sci. Rep., vol. 7, Art. no. 46313,2017 , doi:10.1038/srep46313.
[20] D. Yang, H. Tian, Y Ji, and Q. Quan, “Design of simultaneous high-Q and high-sensitivity photonic crystal refractive index sensors,” JOSA B, vol. 30, no. 8, pp. 2027–2031. 2013 , doi: 10.1364/JOSAB.30.002027.
[21] W. S. Fegadolli, J. E. Oliveira, V. R. Almeida, and A. Scherer, “Compact and low power consumption tunable photonic crystal nanobeam cavity,” Opt. Express , vol.21, no.3, pp.3861–3871, 2013, doi: 10.1364/OE.21.003861.
[22] L. A. Bian, P. G. Liu, Z. Z. Han, G. S. Li, J. Mao, and Z. Lu, “Near-unity absorption in a graphene-embedded defective photonic crystals array,” Superlattices Microstruct. , vol.104, pp.461–469, 2017, doi: 10.1016/j.spmi.2017.03.008.
[23] W. Fan and X. Chen, “Polarization-insensitive tunable multiple electromagnetically induced transparencies analogue in terahertz graphene metamaterial,” Opt. Mater. Express, vol.6, no.8, pp.2607–2615, 2016, doi: 10.1364/OME.6.002607.
[24] T. Pan, C. Qiu, J. Wu, X. Jiang, B. Liu, Y. Yang, H. Zhou, R. Soref, and Y. Su, “Analysis of an electro-optic modulator based on a graphene-silicon hybrid 1D photonic crystal nanobeam cavity,” Opt. Express , vol.23, no.18, pp.23357–23364, 2015 , doi: 10.1364/OE.23.023357.
[25] X. Yin, T. Zhang, L. Chen, and X. Li, “Ultra-compact TE-pass polarizer with graphene multilayer embedded in a silicon slot waveguide,” Opt. Lett. vol.40, no.8, pp.1733–1736, 2015 , doi: 10.1364/OL.40.001733.
[26] A. B. Kuzmenko, L. Benfatto, E. Cappelluti, I. Crassee, D. van der Marel, P. Blake, K. S. Novoselov, and A. K. Geim, “Gate tunable infrared phonon anomalies in bilayer graphene,” Phys. Rev. Lett. , vol.103, no.11, p.116804, 2009 , doi: 10.1103/PhysRevLett.103.116804.
[27] M. Tamagnone, J. S. Gomez-Diaz, J. R. Mosig, and J. Perruisseau-Carrier, “Reconfigurable THz plasmonic antenna concept using a graphene stack,” Appl. Phys. Lett. ,vol.101, no.21, p.214102, 2012, doi: 10.1364/OE.21.015490.
[28] J. S. Gomez-Diaz, C. Moldovan, S. Capdevila, J. Romeu, L. S. Bernard, A. Magrez, A. M. Ionescu, and J. Perruisseau-Carrier, “Self-biased reconfigurable graphene stacks for terahertz plasmonics,” Nat. Commun. , vol.6, no.1, p. 6334, 2015, doi:10.1038/ncomms7334.
[29] H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. , vol.7, no.5, pp.330–334, 2012 , doi: 10.1038/nnano.2012.59.
[30] M. F. Tehrani, R. Ghayour, M. Mohitpour “High-Q and high-absorption photonic crystal nanobeam cavity based on semi-cylinders of air coupled with graphene” Appl. Phys. A., vol.128, no.1,2022, doi: 10.1007/s00339-021-05088-2.
[31] S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, “Thermal conductivity of isotopically modified graphene,” Nat. Mater. , vol.11, no.3, pp.203–207, 2012 ,doi: 10.1038/nmat3207.
[32] M Berahman A.R Malahzadeh, “The Numerical Modeling for Electrical Behavior of Graphene Nanoribbon in the Present of Optical Detector,” Journal of Communication Engineering, vol.7, no.25,2017(in persian),
[33] M. Farhat, C. Rockstuhl, and H. Bağcı, “A 3D tunable and multi-frequency graphene plasmonic cloak,” Opt. Express, vol.21, no.10, pp.12592–12603, 2013 , doi: 10.1364/OE.21.012592.
[34] J. A. Crosse, X. Xu, M. S. Sherwin, and R. B. Liu, “Theory of low-power ultra-broadband terahertz sideband generation in bi-layer graphene,” Nat. Commun., vol.5, no.1, p.4854, 2014 ,doi: 10.1038/ncomms5854 .
[35] K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature, vol.490, pp.192–200, 2012 , doi: 10.1038/nature11458.
[36] Z. Su, J. Yin, and X. Zhao, “Terahertz dual-band metamaterial absorber based on graphene/MgF2 multilayer structures,” Opt. Express, vol.23, no.2, pp.1679–1690, 2015, doi: 10.1364/OE.23.001679.
[37] A. Majumdar, J. Kim, J. Vuckovic, and F. Wang, “Electrical control of silicon photonic crystal cavity by graphene,” Nano Lett. , vol.13, no.2, pp.515–518, 2013, doi: 10.1021/nl3039212.
[38] H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks.” Nature Nanotechnology ,vol.7, pp.330–334. 2012 , doi:10.1038/nnano.2012.59.
[39] Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Optics Express , vol. 19, no. 19, pp. 18529-18542 ,2011,doi:10.1364/OE.19.018529.
[40] M. Fan, H. Yang, P. Zheng, G. Hu, B. Yun, and Y. Cui, “Multilayer graphene electro-absorption optical modulator based on double-stripe silicon nitride waveguide” Optics Express, vol. 25, no. 18, pp. 21619-21629, 2017 ,doi: 10.1364/OE.25.021619.
[41] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic Crystals Molding the Flow of Light, Princeton University, 198–210, 2008.
[42] J. R. Piper and S. H. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics , vol.1, no.4, pp.347–353, 2014, doi: 10.1021/ph400090p.
[43] M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express , vol.21, no.6, pp.7614–7632, 2013 ,doi: 10.1364/OE.21.007614.
[44] X. Gan et al., “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett., vol. 13, no. 2, pp. 691–696, 2013 ,doi: 10.1021/nl304357u.
[45] N. K. Emani, T. F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett., vol.14, no.1, pp.78–82, 2014 , doi: 10.1021/nl403253c.