طراحی یک آنتن مسطح چند بانده با استفاده از مواد متامتریال
محورهای موضوعی : مهندسی الکترونیکسپپیده رضایی 1 , یاشار زهفروش 2 *
1 - کارشناسی ارشد، گروه برق، واحد ارومیه، دانشگاه آزاد اسلامی، ارومیه، ایران
2 - دانشیار، مرکز تحقیقات مایکروویو و آنتن، واحد ارومیه، دانشگاه آزاد اسلامی، ارومیه، ایران
کلید واژه: IDC, آنتن مسطح, متامتریال, میکرواستریپ,
چکیده مقاله :
در این مقاله یک آنتن چهاربانده میکرواستریپی با استفاده از ساختارهای متامتریال ارائه شده است. آنتن پیشنهادی در این مقاله، دارای یک ساختار نامتقارن بوده و از دو المان تشعشعی یکسان و یک صفحه زمین در قسمت پشتی تشکیل شده است. در این طراحی، هر المان تشعشعی از یک خازن متقابل تشکیل شده است که در انتها به یک پچ مثلثی شکل تشعشعی با شکافهای دایروی وصل میشود. آنتن پیشنهادی دارای ابعاد مینیاتوری بهصورت 15×10 میلیمتر مربع است. همچنین آنتن پیشنهادی دارای چهار رزونانس در فرکانسهای 19/3 گیگاهرتز (%25/1)، 22/6 گیگاهرتز (%74/10)، 18/7 گیگاهرتز (%19/5) و 12/9 گیگاهرتز (%52/4) است. پترن و بهره آنتن در فرکانسهای رزونانس قابلقبول میباشد. آنتن پیشنهادی ساخته شده و در آزمایشگاه آنتن مورد آزمایشهای عملی قرار گرفته است. نتایج حاصل از آزمایشها در مقاله ارائه شده و همخوانی خوب و مناسب بین نتایج تست و شبیهسازی، صحت و کارایی طراحی آنتن مایکرواستریپی چندبانده پیشنهادی را تأیید میکند.
In this paper, a four-band microstrip antenna using metamaterial structure is presented. The antenna proposed in this article, has an asymmetric structure and it is made up of two identical radiation elements and ground plane at the back. In this design, each radiation element consists of a reciprocating capacitor, which is attached to a slotted triangular acetate at the end. The proposed antenna has a miniature dimension of 10×15 mm2. Also the proposed antenna has four resonances in frequencies of 3.19 GHz (1.25%), 6.22 GHz (10.74%), 7.18 GHz (5.19%) and 9.12 GHz (4.52%). Pattern and gain of the antenna are acceptable at resonant frequencies and the good consistency between the test result and the simulation confirm the accuracy of the antenna design. The proposed antenna is made and tested in the antenna laboratory. The results of the measurements are presented in the paper. Good consistency between test and simulation results confirms the accuracy and efficiency of the proposed multirole microstrip antenna design.
[1] S. Sharma and R. Mehra, “Printed Monopole Slot Antenna Inspired by Metamaterial Unit Cell for Wireless Applications,” Lecture Notes in Electrical Engineering, pp. 413-424, 2021.
[2] B. Swamy, C. Tavade and K. Singh, “A ring monopole quad band antenna loaded with metamaterial and slots for wireless applications,” Bulletin of Electrical Engineering and Informatics, vol. 10, no. 5, pp. 2716-2723, 2021, doi:10.11591/eei.v10i5.3185.
[3] K. Hossain et al., “A Negative Index Nonagonal CSRR Metamaterial-Based Compact Flexible Planar Monopole Antenna for Ultrawideband Applications Using Viscose-Wool Felt,” Polymers, vol. 13, no. 16, p. 2819, 2021, doi:10.3390/polym13162819.
[4] B. Zong, G. Wang, C. Zhou and Y. Wang, “Compact Low-Profile Dual-Band Patch Antenna Using Novel TL-MTM Structures,” IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 567–570, 2015, doi: 10.1109/LAWP.2014.2372093.
[5] M. S. Majedi and A. R. Attari, “Dual-band resonance antennas using epsilon negative transmission line,” IET Microwaves, Antennas & Propagation, vol. 7, no. 4, pp. 259–267, 2013, doi:10.1049/iet-map.2012.0542.
[6] H. Lee, D.-J. Woo and S. Nam, “Compact and Bandwidth-Enhanced Asymmetric Coplanar Waveguide (ACPW) Antenna Using CRLH-TL and Modified Ground Plane,” IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 810–813, 2016, doi: 10.1109/LAWP.2015.2476340.
[7] D. A. Ketzaki and T. V. Yioultsis, “Metamaterial-Based Design of Planar Compact MIMO Monopoles,” IEEE Transactions on Antennas and Propagation, vol. 61, no. 5, pp. 2758–2766, 2013, doi: 10.1109/TAP.2013.2243813.
[8] K.-L. Wong, Compact and broadband microstrip antennas. New York: John Wiley & Sons, Inc., 2002.
[9] Overview on Interdigital Capacitor Design – KeysightS. www.agilent.com/ fi nd/eesof.
[10] http://www.rfwireless.world.com/calculators/interdigital-capacitor.
[11] R. S. Beeresha, A. M. Khan and H. V. M. Reddy, “Design And Optimization Of Interdigital Capacitor,” International Journal of Research in Engineering and Technology, vol. 05, no. 33, pp. 73–78, 2016, doi:10.15623/ijret.2016.0533016.
[12] “RF Wireless World,” Interdigital capacitor calculator | converters and calculators. [Online]. Available: https://www.rfwireless-world.com/calculators/interdigital-capacitor-calculator.html.
[13] A. Gupta and R. K. Chaudhary, “The Metamaterial Antenna: A Novel Miniaturized Dual-Band Coplanar Waveguide-Fed Antenna with Backed Ground Plane,” IEEE Antennas and Propagation Magazine, vol. 60, no. 4, pp. 41–48, 2018, doi: 10.1109/MAP.2018.2839894.
_||_[1] S. Sharma and R. Mehra, “Printed Monopole Slot Antenna Inspired by Metamaterial Unit Cell for Wireless Applications,” Lecture Notes in Electrical Engineering, pp. 413-424, 2021.
[2] B. Swamy, C. Tavade and K. Singh, “A ring monopole quad band antenna loaded with metamaterial and slots for wireless applications,” Bulletin of Electrical Engineering and Informatics, vol. 10, no. 5, pp. 2716-2723, 2021, doi:10.11591/eei.v10i5.3185.
[3] K. Hossain et al., “A Negative Index Nonagonal CSRR Metamaterial-Based Compact Flexible Planar Monopole Antenna for Ultrawideband Applications Using Viscose-Wool Felt,” Polymers, vol. 13, no. 16, p. 2819, 2021, doi:10.3390/polym13162819.
[4] B. Zong, G. Wang, C. Zhou and Y. Wang, “Compact Low-Profile Dual-Band Patch Antenna Using Novel TL-MTM Structures,” IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 567–570, 2015, doi: 10.1109/LAWP.2014.2372093.
[5] M. S. Majedi and A. R. Attari, “Dual-band resonance antennas using epsilon negative transmission line,” IET Microwaves, Antennas & Propagation, vol. 7, no. 4, pp. 259–267, 2013, doi:10.1049/iet-map.2012.0542.
[6] H. Lee, D.-J. Woo and S. Nam, “Compact and Bandwidth-Enhanced Asymmetric Coplanar Waveguide (ACPW) Antenna Using CRLH-TL and Modified Ground Plane,” IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 810–813, 2016, doi: 10.1109/LAWP.2015.2476340.
[7] D. A. Ketzaki and T. V. Yioultsis, “Metamaterial-Based Design of Planar Compact MIMO Monopoles,” IEEE Transactions on Antennas and Propagation, vol. 61, no. 5, pp. 2758–2766, 2013, doi: 10.1109/TAP.2013.2243813.
[8] K.-L. Wong, Compact and broadband microstrip antennas. New York: John Wiley & Sons, Inc., 2002.
[9] Overview on Interdigital Capacitor Design – KeysightS. www.agilent.com/ fi nd/eesof.
[10] http://www.rfwireless.world.com/calculators/interdigital-capacitor.
[11] R. S. Beeresha, A. M. Khan and H. V. M. Reddy, “Design And Optimization Of Interdigital Capacitor,” International Journal of Research in Engineering and Technology, vol. 05, no. 33, pp. 73–78, 2016, doi:10.15623/ijret.2016.0533016.
[12] “RF Wireless World,” Interdigital capacitor calculator | converters and calculators. [Online]. Available: https://www.rfwireless-world.com/calculators/interdigital-capacitor-calculator.html.
[13] A. Gupta and R. K. Chaudhary, “The Metamaterial Antenna: A Novel Miniaturized Dual-Band Coplanar Waveguide-Fed Antenna with Backed Ground Plane,” IEEE Antennas and Propagation Magazine, vol. 60, no. 4, pp. 41–48, 2018, doi: 10.1109/MAP.2018.2839894.