افزایش انعطاف پذیری و بهبود تاب آوری ریزشبکه هوشمند با هماهنگی منابع ذخیره ساز و تولیدات پراکنده در زمان وقوع پیشامد
محورهای موضوعی : مهندسی الکترونیک
1 - گروه مهندسی برق، دانشگاه آزاد اسلامی، واحد بوشهر، بوشهر، ایران
2 - گروه مهندسی برق، دانشگاه آزاد اسلامی، واحد بوشهر، بوشهر، ایران
کلید واژه: تولید پراکنده, منابع تجدیدپذیر, منابع ذخیره ساز, ریزشبکه, پایداری,
چکیده مقاله :
ریزشبکه ها اغلب به دلیل ساختار کوچک و تحمل پایین در برابر تغییرات، دارای اینرسی کمی هستند، لذا حفظ پایداری ولتاژ و فرکانس به ویژه در حالت جزیرهای بسیار دشوار و تاب آوری آنها بسیار آسیب پذیر است. با توجه به سرعت پاسخگویی پایین منابع انرژی اولیه و وجود لینک ارتباطی بین خروجی واحدها و سیستمهای کنترل در تولیدات پراکنده، این تولیدات حتی اگر سیستم کنترلی کارآمدی هم داشته باشند، به تنهایی نمیتوانند پایداری ریزشبکه را حفظ کنند. در مقاله یک ساختار کنترل فازی تنظیم شده با شبکه عصبی برای ایجاد تعادل بین سمت تولید و مصرف در ریزشبکه معرفی شده است. این کنترل کننده به واسطه منطق فازی امکان عملکرد منعطف ریزشبکه در دو حالت اتصال به شبکه و جزیرهای را فراهم میکند و امکان انتقال نرم بین این دو حالت را تضمین میکند که باعث افزایش قابل توجه تابآوری میشود. در این سیستم کنترلی یک شبکه عصبی آموزش دیده در شرایط مختلف بهرهبرداری وظیفه تنظیم دقیق منطق فازی را بر عهده دارد. با توجه به حساسیت بارهای موجود در ریزشبکه، ساختار پیشنهادی به منظور بالابردن سرعت پاسخ به عدم تعادل بین تولید و مصرف و جلوگیری از انحراف بیش از حد ولتاژ و فرکانس به ویژه در زمان وقوع پیشامد شدید، بصورت تعاملی با منبع ذخیرهساز طراحی شده است. با استفاده از این کنترل کننده، نوسانات تولید منابع تجدیدپذیر نیز به سرعت جبران شده و امکان استفاده از این تولیدات به ویژه در حالت جدا از شبکه، بدون تاثیر منفی در تاب آوری و ایجاد ناپایداری فراهم میشود.
The microgrid inertia as a result of tiny structure and barely tolerance variations, is fairly low. Thus, the maintenance of voltage stability and frequency specifically in islanded mode is extremely demanding. Even if these products have efficient control system, they can’t retain microgrid stability due to the low speed of response in primary sources of energy and communication delays of the links between outer unit and control system in distributed generation. Introducing a structure of fuzzy control arranged with neural network to balance between generation part and consumption part in micro grid is the main purpose of this paper. Using the fuzzy logic, this controller enables flexible operation of microgrids in both network and islanded modes. In the proposed control system, a trainable neural network in different operating conditions is responsible for fine tuning of the fuzzy logic system. Because of the sensitivity of the loads in the microgrid the proposed structure is designed to interact with the storage source in order to increase the response speed to the imbalance between production and consumption. This might prevent excessive voltage and frequency deviation, especially in the severe situations. With this controller, fluctuations in the production of renewable resources quickly compensated without a negative impact on resilience and instability of the microgrid, especially while disconnecting from the main network
[1] G. Dileep, "A survey on smart grid technologies and applications," Renewable Energy, vol. 146, pp. 2589-2625, 2020, doi:10.1016/j.renene.2019.08.092.
[2] S. Chandak and P. K. J. I. J. o. E. R. Rout, "The implementation framework of a microgrid: A review," International Journal of Energy Research, vol. 45, no. 3, pp. 3523-3547, 2021, doi:10.1002/er.6064.
[3] M. F. Zia, M. Benbouzid, E. Elbouchikhi, S. Muyeen, K. Techato, and J. M. J. I. A. Guerrero, "Microgrid transactive energy: Review, architectures, distributed ledger technologies, and market analysis," in IEEE Access, vol. 8, pp. 19410-19432, 2020, doi: 10.1109/ACCESS.2020.2968402.
[4] M. Yadav, N. Pal, and D. K. J. I. A. Saini, "Microgrid Control, Storage, and Communication Strategies to Enhance Resiliency for Survival of Critical Load," in IEEE Access, vol. 8, pp. 169047-169069, 2020, doi: 10.1109/ACCESS.2020.3023087.
[5] K. C. Meje, L. Bokopane, and K. Kusakana, "Microgrids control strategies: A survey of available literature," in 2020 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE), 2020, pp. 167-173, doi: 10.1109/ICSGCE49177.2020.9275651.
[6] N. Pitalúa-Díaz et al., "An ANFIS-based modeling comparison study for photovoltaic power at different geographical places in Mexico," Energies, vol. 12, no. 14, p. 2662, 2019, doi: 10.3390/en12142662.
[7] Z. Liu, C. Su, H. Høidalen, and Z. Chen, "A Multiagent System-Based Protection and Control Scheme for Distribution System With Distributed-Generation Integration," IEEE Transactions on Power Delivery, vol. 32, no. 1, pp. 536-545, 2017, doi: 10.1109/TPWRD.2016.2585579.
[8] R. M. J. E. c. Kamel and management, "Maintaining stability of standalone Micro-Grid by employing electrical and mechanical fault ride through techniques upon fixed speed wind generation systems," Energy Conversion and Management, vol. 74, pp. 149-161, 2013, doi:10.1016/j.enconman.2013.04.031.
[9] R. M. Kamel and B. Kermanshahi, "Design and implementation of models for analyzing the dynamic performance of distributed generators in the micro grid part I: Micro turbine and solid oxide fuel cell," SCIENTIA IRANICA, vol.17, no.1, pp.47-58, 2010.
[10] D. K. Dheer, N. Soni, and S. Doolla, "Improvement of small signal stability margin and transient response in inverter-dominated microgrids," Sustainable Energy, Grids Networks, vol. 5, pp. 135-147, 2016, doi:10.1016/j.segan.2015.12.005.
[11] Y. Peng, Z. Shuai, J. M. Guerrero, Y. Li, A. Luo, and Z. J. J. I. T. o. I. E. Shen, "Performance improvement of the unbalanced voltage compensation in islanded microgrid based on small-signal analysis," in IEEE Transactions on Industrial Electronics, vol. 67, no. 7, pp. 5531-5542, July 2020, doi: 10.1109/TIE.2019.2934021.
_||_
[1] G. Dileep, "A survey on smart grid technologies and applications," Renewable Energy, vol. 146, pp. 2589-2625, 2020, doi:10.1016/j.renene.2019.08.092.
[2] S. Chandak and P. K. J. I. J. o. E. R. Rout, "The implementation framework of a microgrid: A review," International Journal of Energy Research, vol. 45, no. 3, pp. 3523-3547, 2021, doi:10.1002/er.6064.
[3] M. F. Zia, M. Benbouzid, E. Elbouchikhi, S. Muyeen, K. Techato, and J. M. J. I. A. Guerrero, "Microgrid transactive energy: Review, architectures, distributed ledger technologies, and market analysis," in IEEE Access, vol. 8, pp. 19410-19432, 2020, doi: 10.1109/ACCESS.2020.2968402.
[4] M. Yadav, N. Pal, and D. K. J. I. A. Saini, "Microgrid Control, Storage, and Communication Strategies to Enhance Resiliency for Survival of Critical Load," in IEEE Access, vol. 8, pp. 169047-169069, 2020, doi: 10.1109/ACCESS.2020.3023087.
[5] K. C. Meje, L. Bokopane, and K. Kusakana, "Microgrids control strategies: A survey of available literature," in 2020 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE), 2020, pp. 167-173, doi: 10.1109/ICSGCE49177.2020.9275651.
[6] N. Pitalúa-Díaz et al., "An ANFIS-based modeling comparison study for photovoltaic power at different geographical places in Mexico," Energies, vol. 12, no. 14, p. 2662, 2019, doi: 10.3390/en12142662.
[7] Z. Liu, C. Su, H. Høidalen, and Z. Chen, "A Multiagent System-Based Protection and Control Scheme for Distribution System With Distributed-Generation Integration," IEEE Transactions on Power Delivery, vol. 32, no. 1, pp. 536-545, 2017, doi: 10.1109/TPWRD.2016.2585579.
[8] R. M. J. E. c. Kamel and management, "Maintaining stability of standalone Micro-Grid by employing electrical and mechanical fault ride through techniques upon fixed speed wind generation systems," Energy Conversion and Management, vol. 74, pp. 149-161, 2013, doi:10.1016/j.enconman.2013.04.031.
[9] R. M. Kamel and B. Kermanshahi, "Design and implementation of models for analyzing the dynamic performance of distributed generators in the micro grid part I: Micro turbine and solid oxide fuel cell," SCIENTIA IRANICA, vol.17, no.1, pp.47-58, 2010.
[10] D. K. Dheer, N. Soni, and S. Doolla, "Improvement of small signal stability margin and transient response in inverter-dominated microgrids," Sustainable Energy, Grids Networks, vol. 5, pp. 135-147, 2016, doi:10.1016/j.segan.2015.12.005.
[11] Y. Peng, Z. Shuai, J. M. Guerrero, Y. Li, A. Luo, and Z. J. J. I. T. o. I. E. Shen, "Performance improvement of the unbalanced voltage compensation in islanded microgrid based on small-signal analysis," in IEEE Transactions on Industrial Electronics, vol. 67, no. 7, pp. 5531-5542, July 2020, doi: 10.1109/TIE.2019.2934021.