آنتن موج نشتی شکاف دار فرکتالی بر پایه SIW و خط انتقال CRLH متعادل با قابلیت اسکن پهنای باند پشت تاب بهبود یافته و افزایش گین در باند x
حسین مشهدی
1
(
"گروه مهندسی برق، دانشکده فنی مهندسی، دانشگاه آزاد اسلامی واحد ارومیه، ارومیه، ایران
)
لقمان اسدپور
2
(
دانشگاه آزاد اسلامی واحد ارومیه
)
یاشار زهفروش
3
(
مرکز تحقیقات مایکروویو و آنتن، واحد ارومیه ،دانشگاه آزاد اسلامی، ارومیه، ایران
)
توحید صدقی
4
(
دانشگاه ازاد واحد ارومیه
)
کلید واژه: آنتن موج نشتی, اسکن پرتو, بهره آنتن, خط انتقال راستگرد-چپگرد (CRLH), موجبر شکاف¬دار, موجبر مجتمع شده بر روي زيرلايه (SIW).,
چکیده مقاله :
یک آنتن موج نشتی شکافدار به شکل فرکتال جعبه ای مرتبه اول Vicsek بر پایه خط انتقال راستگرد-چپگرد متعادل (Balanced CRLH-TL) برای بهبود پهنای باند فرکانسی و دستیابی به بهره ثابت بالا ارائه شده است. آنتن پیشنهادی از آرایه سلولهای واحد "موجبر مجتمع شده بر روي زيرلايه" (SIW) تشکیل شده است که توسط یک شکافی به شکل فرکتال جعبه ای مرتبه اول Vicsek برش داده شده در لایه فوقانی SIW و دو پچ تعبیه شده در زیر شکافهای فرکتال جعبه ای Vicsek، پیکربندی شده است. سلول CRLH استفاده شده در این آنتن، از نوع متعادل بوده و بنابراین امکان اسکن فرکانسی از سمت پشتتاب تا جلوتاب بدون باند قطع در پهلوتاب فراهم آمده است. آنتن پیشنهادی در مقایسه با آنتن موج نشتی SIW مسطح، پهنای باند اسکن رو به عقب را بهبود بخشیده است. همچنین یک محدوده تشعشی بیم اندازهگیری شده 79- تا 81 درجه در دامنه فرکانسی از GHz7٫3 تا GHz13 و بهره ثابت بزرگتر از 12 دسی بل در کل دامنه فرکانسی باند X بدست آمده است.
چکیده انگلیسی :
A first-order Vicsek box fractal-shaped slotted leaky-wave antenna based on a balanced composite right/left-handed transmission line (Balanced CRLH-TL) is presented to improve frequency bandwidth and achieve high constant gain. The proposed antenna consists of an array of "substrate-integrated waveguide" (SIW) unit cells, configured by a first-order Vicsek box fractal slot etched on the top layer of the SIW, and two patches embedded beneath the Vicsek box fractal slots. The CRLH cells used in this antenna are balanced, which allows for frequency scanning from backward to forward directions without a cut-off band in the broadside direction. The proposed antenna improves the backward scanning bandwidth compared to conventional planar SIW leaky-wave antennas. Additionally, a measured beam radiation range of -79 to 81 degrees has been achieved over the frequency range of 7.3 GHz to 13 GHz, with a constant gain greater than 12 dB across the entire X-band frequency range.
استفاده از ساختار فرکتال برای افزایش پهنای باند و پوشش وسیع تری از فرکانس ها.
طراحی آنتن بر پایه خط انتقال راستگرد-چپگرد متعادل جهت اسکن بدون باند قطع در پهلوتاب.
حفظ گین ثابت در کل باند فرکانسی.
بهبود پهنای باند اسکن رو به عقب.
[1] Mohammad Mahdi Sabahi, Abbas Ali Heidari, Masoud Movahhedi, "A Circularly Polarized Leaky-Wave Antenna Based on Balanced Right-Handed/Left-Handed Transmission Lines" 23rd Iranian Conference on Electrical Engineering, Tehran (No: 10408), 2015, [in persian].
[2] Y. J. Guo and R. W. Ziolkowski, "Advanced Antenna Array Engineering for 6G and Beyond Wireless Communications," published by John Wiley& Sons, inc., Hoboken, New Jersey, Online ISBN:9781119712947, doi :10.1002/9781119712947, 2022.
[3] M. M. Sabahi, A. A. Heidari and M. Movahhedi, "A Compact CRLH Circularly Polarized Leaky-Wave Antenna Based on Substrate-Integrated Waveguide," in IEEE Transactions on Antennas and Propagation, vol. 66, no. 9, pp. 4407-4414, Sept. 2018, doi: 10.1109/TAP.2018.2851278.
[4] A. M. Malekshah, A. R. Attari, and M. S. Majedi, "Improved design of uniform SIW leaky wave antenna by considering the unwanted mode", in IEEE Transactions on Antennas and Propagation, vol. 68, no. 8, pp. 6378–6382, Feb. 2020, doi: 10.1109/TAP.2020.2975292.
[5] S. Asadi, H. Zahra, A. Kiyani, A. Pourziad and S. M. Abbas, "Composite Right/Left Handed Leaky Wave Antenna Using Complementary Omega Shape on Half Mode Substrate Integrated Waveguide," IEEE International Symposium On Antennas And Propagation (ISAP), Kuala Lumpur, Malaysia, 2023, pp. 1-2, doi: 10.1109/ISAP57493.2023.10388549.
[6] H. Dolatkhah and Z. Atlasbaf, "An improved SIW Leaky Wave Antenna Based on a Compact CRLH unit cell," arXiv:2305.07897v1 [physics.app-ph], doi: 10.48550/arXiv.2305.07897, 13 May 2023.
[7] T. Yang, P.-L. Chi and R. Xu, "Novel composite right/left-handed leaky-wave antennas based on the folded substrate integrated waveguide structures," Progress In Electromagnetics Research C, vol. 29, pp. 235–248, 2012.
[8] Y. Dong and T. Itoh, "Composite Right/Left-Handed Substrate Integrated Waveguide and Half Mode Substrate Integrated Waveguide Leaky-Wave Structures," in IEEE Transactions on Antennas and Propagation, vol. 59, no. 3, pp. 767-775, March 2011, doi: 10.1109/TAP.2010.2103025.
[9] Y. Weitsch and T. F. Eibert, "Analysis and design of a composite left/right-handed leaky wave antenna based on the H10 rectangular waveguide mode," Advances in Radio Science, vol. 6, pp. 49-54, 2008, doi: 10.5194/ars-6-49-2008.
[10] Nasimuddin, Z. N. Chen and X. Qing, "Slotted SIW leaky-wave antenna with improved backward scanning bandwidth and consistent gain," 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 2017, pp. 752-755, doi: 10.23919/EuCAP.2017.7928339.
[11] M. Z. Ali and Q. U. Khan, "High Gain Backward Scanning Substrate Integrated Waveguide Leaky Wave Antenna," in IEEE Transactions on Antennas and Propagation, vol. 69, no. 1, pp. 562-565, Jan. 2021, doi: 10.1109/TAP.2020.3006389.
[12] X. Zou, D. Yu, Y. Fan, J. Li and W. Luo, "A Substrate-Integrated Waveguide Leaky-Wave Antenna Based on Eye-Shaped Transverse Slot," in IEEE Transactions on Antennas and Propagation, vol. 69, no. 11, pp. 7947-7952, Nov. 2021, doi: 10.1109/TAP.2021.3083758.
[13] R. Agarwal, R. L. Yadava and S. Das, "A Multilayered SIW-Based Circularly Polarized CRLH Leaky Wave Antenna," in IEEE Transactions on Antennas and Propagation, vol. 69, no. 10, pp. 6312-6321, Oct. 2021, doi: 10.1109/TAP.2021.3082618.
[14] P. Kumar, T. Ali and M. M. M. Pai, "Electromagnetic Metamaterials: A New Paradigm of Antenna Design," in IEEE Access, vol. 9, pp. 18722-18751, 2021, doi: 10.1109/ACCESS.2021.3053100.
[15] H. Mashhadi, L. Asadpor, Y. Zehforoosh and T. Sedghi, "Slotted Substrate-Integrated Waveguide Leaky-Wave Antenna with Improved Backward Scanning Bandwidth and Constant Gain in X-band," IETE Journal of Research, 2023, doi:10.1080/03772063.2023.2265866.
[16] D. K. Karmokar, Y. J. Guo, P. -Y. Qin, S. -L. Chen and T. S. Bird, "Substrate Integrated Waveguide-Based Periodic Backward-to-Forward Scanning Leaky-Wave Antenna With Low Cross-Polarization," in IEEE Transactions on Antennas and Propagation, vol. 66, no. 8, pp. 3846-3856, Aug. 2018, doi: 10.1109/TAP.2018.2835502.
[17] H. Zhang, Y. Jiao, G. Zhao and C. Zhang, "CRLH-SIW based leaky wave antenna with low cross-polarisation for Ku-band applications," Electron Lett, vol. 52, no. 17, pp. 1426-1428, 2016, doi: 10.1049/el.2016.1825.
[18] G.C. Wu, G.M. Wang, H.X. Peng, J.G. Liang and X-J. Gao, "Design of leaky-wave antenna with wide beam-scanning angle and low cross-polarisation using novel miniaturized composite right/left-handed transmission line," IET Microw Antennas Propag, vol. 10, no. 7, pp. 777-783, 2016, doi: 10.1049/iet-map.2015.0462.
[19] P. Belwal, R. Agrawal and SC. Gupta "Substrate integrated waveguide leaky wave antenna with low cross polarization in X-Ku band," Int J RF Microw Comput Aided Eng, vol. 28, no. 5, 2018, doi: 10.1002/mmce.21590.
[20] N. Nasimuddin, Z. N. Chen and X. Qing, "Substrate Integrated Metamaterial-Based Leaky-Wave Antenna With Improved Boresight Radiation Bandwidth," in IEEE Transactions on Antennas and Propagation, vol. 61, no. 7, pp. 3451-3457, July 2013, doi: 10.1109/TAP.2013.2256094.
[21] W. Cao, Z. N. Chen, W. Hong, B. Zhang and A. Liu, "A Beam Scanning Leaky-Wave Slot Antenna With Enhanced Scanning Angle Range and Flat Gain Characteristic Using Composite Phase-Shifting Transmission Line," in IEEE Transactions on Antennas and Propagation, vol. 62, no. 11, pp. 5871-5875, Nov. 2014, doi: 10.1109/TAP.2014.2350512.
[22] Sh. Yang , R. Cui , J. Liu, M. Wang and L. Gao, "Fractal study of interporosity flow function and shape factor in rough fractured dual porous media," Chemical Engineering Science, vol. 280, p. 118960, 5 October 2023, doi: 10.1016/j.ces.2023.118960.