An Improved Mesh-Free Approach for Electrical Impedance Tomography Using Modified Element-Free Galerkin Method and Neural Network Correction
Subject Areas : journal of Artificial Intelligence in Electrical Engineering
Maedeh Hadinia
1
,
Amir Zare- Bazghaleh
2
*
1 - گروه فیزیک و مهندسی پزشکی، واحد رشت، دانشگاه آزاد اسلامي، رشت، ايران
2 - گروه مهندسی برق، واحد لنگرود، دانشگاه آزاد اسلامی، لنگرود، ایران
Keywords: Electrical impedance tomography, Modified element-free Galerkin method, Mesh-free methods, Neural network, Image reconstruction,
Abstract :
Electrical Impedance Tomography (EIT) is a promising imaging modality whose accuracy strongly depends on the precision of its forward problem solution. In this study, a Modified Element-Free Galerkin Method (MEFG) is developed to solve both forward and inverse problems in EIT. The MEFG approach preserves the mesh-free advantages of the conventional Element-Free Galerkin (EFG) Method while directly imposing essential boundary conditions through modified shape functions that satisfy the Kronecker delta property. To further improve reconstruction accuracy, a back-propagation neural network is trained to reduce discrepancies between simulated and exact data during inverse problem. Numerical experiments using a heterogeneous model demonstrate that MEFG achieves superior forward model accuracy compared to the traditional finite element method. Additionally, the MEFG improves image reconstruction stability in the presence of measurement noise, validating the robustness of the proposed approach for practical biomedical EIT applications.
[1] S. Mansouri, Y. Alharbi, F. Haddad, S. Chabcoub, A. Alshrouf, and A. A. Abd-Elghany, "Electrical impedance tomography–recent applications and developments," J. Electr. Bioimpedance, vol. 12, no. 1, p. 50, 2021.
[2] Y. Li, N. Wang, L. F. Fan, P. F. Zhao, J. H. Li, L. Huang, and Z. Y. Wang, "Robust electrical impedance tomography for biological application: A mini review," Heliyon, vol. 9, no. 4, p. e15291, 2023.
[3] B. Brazey, Y. Haddab, and N. Zemiti, "Robust imaging using electrical impedance tomography: Review of current tools," Proc. R. Soc. A: Math. Phys. Eng. Sci., vol. 478, no. 2258, p. 20210713, 2022.
[4] Y. Shi, Z. Yang, F. Xie, S. Ren, and S. Xu, "The research progress of electrical impedance tomography for lung monitoring," Front. Bioeng. Biotechnol., vol. 9, p. 726652, 2021.
[5] G. Franchineau, A. H. Jonkman, L. Piquilloud, T. Yoshida, E. Costa, H. Rozé, and M. Schmidt, "Electrical impedance tomography to monitor hypoxemic respiratory failure," Am. J. Respir. Crit. Care Med., vol. 209, no. 6, pp. 670–682, 2024.
[6] A. Adler, "Electrical impedance tomography," in Electrical Impedance Tomography, A. Adler, Ed., Boca Raton, FL: CRC Press, 2021, pp. 3–11.
[7] L. Zhou, B. Harrach, and J. K. Seo, "Monotonicity-based electrical impedance tomography for lung imaging," Inverse Problems, vol. 34, no. 4, p. 045005, 2018.
[8] Y. Li, L. Rao, R. He, G. Xu, Q. Wu, W. Yan, G. Dong, and Q. Yang, "A novel combination method of electrical impedance tomography, inverse problem for brain imaging," IEEE Trans. Magn., vol. 41, no. 5, pp. 1848–1851, 2005.
[9] M. Mhajna and S. Abboud, "Assessment of cardiac stroke volume in patients with implanted cardiac pacemaker using parametric electrical impedance tomography: A theoretical 2D study," Int. J. Numer. Methods Eng., vol. 29, pp. 630–640, 2013.
[10] S. Zhang, G. Xu, X. Zhang, B. Zhang, H. Wang, Y. Xu, N. Yin, Y. Li, and W. Yan, "Computation of a 3-D model for lung imaging with electrical impedance tomography," IEEE Trans. Magn., vol. 48, no. 2, pp. 651–654, 2012.
[11] A. M. CC, R. R. De Santis Santiago, R. Di Fenza, L. E. Gibson, P. A. Restrepo, M. G. Chang, and L. Berra, "Bedside monitoring of lung perfusion by electrical impedance tomography in the time of COVID-19," Br. J. Anaesth., 2020.
[12] Y. Fu, R. Zou, S. Wang, J. Wen, L. Rong, M. Tang, and A. Adler, "Monitoring bronchoalveolar lavage with electrical impedance tomography: First experience in a patient with COVID-19," Physiol. Meas., vol. 41, no. 8, p. 085008, 2020.
[13] F. Perier, S. Tuffet, T. Maraffi, G. Alcala, M. Victor, A. F. Haudebourg, and A. M. Dessap, "Electrical impedance tomography to titrate positive end-expiratory pressure in COVID-19 acute respiratory distress syndrome," Crit. Care, vol. 24, no. 1, pp. 1–9, 2020.
[14] T. Mauri, E. Spinelli, E. Scotti, G. Colussi, M. C. Basile, S. Crotti, and A. Pesenti, "Potential for lung recruitment and ventilation-perfusion mismatch in patients with the acute respiratory distress syndrome from coronavirus disease 2019," Crit. Care Med., 2020.
[15] P. Van der Zee, P. Somhorst, H. Endeman, and D. Gommers, "Electrical impedance tomography for positive end-expiratory pressure titration in COVID-19 related ARDS," Am. J. Respir. Crit. Care Med., 2020.
[16] Z. Zhao, W. H. Kung, H. T. Chang, Y. L. Hsu, and I. Frerichs, "COVID-19 pneumonia: Phenotype assessment requires bedside tools," Crit. Care, vol. 24, no. 1, pp. 1–3, 2020.
[17] M. Šterk and R. Trobec, "Meshless solution of a diffusion equation with parameter optimization and error analysis," Eng. Anal. Bound. Elem., vol. 32, pp. 567–577, 2008.
[18] A. K. Khambampati, Y. G. Lee, K. Y. Kim, D. W. Jerng, and S. Kim, "A meshless improved boundary distributed source method for two-phase flow monitoring using electrical resistance tomography," Eng. Anal. Bound. Elem., vol. 52, pp. 1–15, 2015.
[19] A. K. Khambampati, R. L. Wang, B. S. Kim, K. Y. Kim, Y. G. Lee, and S. Kim, "A mesh-less method to solve electrical resistance tomography forward problem using singular boundary distributed source method," Flow Meas. Instrum., vol. 46, pp. 303–311, 2015.
[20] M. Hadinia and R. Jafari, "An element-free Galerkin forward solver for the complete-electrode model in electrical impedance tomography," Flow Meas. Instrum., vol. 45, pp. 68–74, 2015.
[21] C. Qin, J. Tian, X. Yang, K. Liu, G. Yan, J. Feng, and M. Xu, "Galerkin-based meshless methods for photon transport in the biological tissue," Opt. Express, vol. 16, no. 25, pp. 20317–20333, 2008.
[22] B. Brandstätter, "Jacobian calculation for electrical impedance tomography based on the reciprocity principle," IEEE Trans. Magn., vol. 39, no. 3, pp. 1309–1312, 2003.
[23] H. Razmjoo, M. Movahhedi, and A. Hakimi, "Modification on a fast meshless method for electromagnetic field computations," IET Sci. Meas. Technol., vol. 5, no. 5, pp. 175–182, 2011.
[24] M. Vauhkonen, Electrical impedance tomography and prior information, Ph.D. dissertation, Kuopio Univ., 1997.
[25] D. Hegen, "Element-free Galerkin methods in combination with finite element approaches," Comput. Methods Appl. Mech. Eng., vol. 135, no. 1–2, pp. 143–166, 1996.
[26] S. L. Ho, S. Yang, J. M. Machado, and H. C. C. Wong, "Application of a meshless method in electromagnetics," IEEE Trans. Magn., vol. 37, no. 5, pp. 3198–3202, 2002.
[27] M. Hadinia and R. Jafari, "Improvement of performance and sensitivity of 2D and 3D image reconstruction in EIT using EFG forward model," Biomed. Phys. Eng. Express, vol. 8, no. 3, p. 035011, 2022.
[28] T. J. Yorkey, J. G. Webster, and W. J. Tompkins, "Comparing reconstruction algorithms for electrical impedance tomography," IEEE Trans. Biomed. Eng., no. 11, pp. 843–852, 2007.
[29] R. Kulkarni, Analytical forward models for breast cancer detection using electrical impedance tomography, M.S. thesis, Rensselaer Polytech. Inst., 2009.