Alternating Rectifier in SDLVA by Power Detector: A Novel Technique for Improved Chip Area and Power Consumption
Subject Areas :
Electrical Engineering
Nader‎ Javadifar
1
,
Massoud Dousti
2
*
,
Hassan Hajghassem
3
1 - Department of Electrical Engineering, Science and Research branch, Islamic Azad University, Tehran, Iran
2 - Department of Electrical Engineering, Science and Research branch, Islamic Azad University, Tehran, Iran
3 - Department of Electrical Engineering, Science and Research branch, Islamic Azad University, Tehran, Iran.
Received: 2020-03-04
Accepted : 2020-06-16
Published : 2020-06-01
Keywords:
SDLVA,
logarithmic amplifiers,
video amplifier,
microwave signals,
Abstract :
A novel method to detect microwave signals power in successive detection logarithmic video amplifier (SDLVA) based on single metal-oxidesemiconductor field effect transistor (MOSFET) is proposed. This is an alternative for the conventional method of rectifying that logarithmic amplifiers are being used to detect a RF signal power. A complete design and analysis of circuit functioning in saturation region of MOSFET operation is discussed. Simple structure, low power consumption, small chip area, excellent operation in microwave frequencies and low temperature variation makes it suitable for on-chip microwave signal power detecting. Design of detector is performed in standard 0.18μm RF TSMC CMOS process. The design layout and post layout simulation results in K band (18-26.5 GHz) are presented.
References:
Hughes, R. S. (1986).Logarithmic Amplification. Artech House.
Oki, A. K., Kim, M. E., Gorman, G. M., &Camou, J. B. (1988). High-Performance GaAsHeterojunction Bipolar Transistor Logarithmic IF Amplifier. IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium, doi:1109/22.17440.
Gertel, E., Johnson, D. M., & Kumar, M. (1990). 2-18 GHZ Logarithmic Amplification Componentry, IEEE MTT-S Digest. doi:1109/MWSYM.1990.99770.
Nelly, D. J., & Parsons, D. S. (1992). A GaAs MMIC Based Successive Detection Logarithmic Amplifier. IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium. doi:1109/MCS.1992.186022.
Chua, L.W. (1992). A GaAs MMIC for a 2-7GHz Successive Detection Logarithmic Amplifier. IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium. doi:1109/MCS.1992.186021.
Wu, J. W., Hsu, K. C., Lai, W. J., To, C. H., Chen, S. W., Tang, C. W., &Juang, Y. Z. (2011).A linear-in-dB radio-frequency power detector.IEEE Microwave Symposium Digest (MTT). doi:1109/MWSYM.2011.5972772.
Shieh, M. L., Lai, W. J., Li, J. S., Chiang, Y. L., Wu, H. H., Xsieh, C. C., et al. (2009). Linear Radio Frequency Power Detector. IEEE Microwave Conference, APMC 2009, doi:1109/APMC.2009.5385446.
Haynes, M. (2008). Design and Measurement of a Wideband InP SDLA. ARMMS, April.
Haynes, M. (2008). Wideband Monolithic SDLA Design Using InP DHBT Technology.IET Seminar on RF and Microwave IC Design, doi:1049/ic:20080109.
Kimura, K. (1993). A CMOS Logarithmic IF Amplifier with Unbalanced Source-Coupled Pairs. IEEE J. Solid-State Circuits, doi:1109/4.179206.
Analog Devices, AD640 Datasheet, Rev C, 1999.
Kimura, K. (1992). Some Circuit Design Techniques for Bipolar and MOS Pseudologarithmic Rectifiers Operable on Low Supply Voltage. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,doi:1109/81.250169.
Kimura, K. (1996). Some Circuit Design Techniques for Low-Voltage Analog Functional Elements Using Squaring Circuits. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, doi:1109/81.508175.
Chadwick, P.E. (1990). Advances in Logarithmic Amplifiers. IET Fifth International Conference on Radio Receivers and Associated Systems, 51-58.
Gorman, G. M., Oki, A. K., Mrozek, E. M., Camou, J. B., Umemoto, D. K. & Kim, M. E. (1989). A GaAs HBT Monolithic Logarithmic IF (0.5 to 1.5 GHz) Amplifier with 60 dB Dynamic Range and 400 mW Power Consumption, IEEE MTT-S Digest, doi:1109/MWSYM.1989.38784.
Yamada, F.M., Oki, A.K., Streit, D.C., Saito, Y., Coulson, A.R., Atwood, W.C., et al. (1994). Reliability of a High Performance Monolithic IC Fabricated Using a Production GaAsA1GaAs HBT Process. IEEE GaAs IC Symposium, doi:1109/GAAS.1994.636983.
Khorram, S., Rofougaran, A., &Abidi, A. A. (1995). A CMOS Limiting Amplifier and Signal Strength Indicator. IEEE Symposium on VLSl Circuits Digest of Technical Papers, doi:1109/VLSIC.1995.520702.
Woochul Jeon, (2005). Design and Fabrication of On-Chip Microwave Pulse Power Detectors. Doctor of Philosophy Dissertation, University of Maryland.
Zhou, Y. &Wah, M. C. Y. (2006). A wide band CMOS RF power detector. IEEE International Symposium on Circuits and Systems, doi:1109/ISCAS.2006.1693562.
Ferrari, G., Prati, E., Fumagalli, L., Sampietro, M., &Fanciulli, M. (2005). Microwave power detector based on a single MOSFET in standard technology. IEEE European Microwave Conference, doi:1109/EUMC.2005.1610150.
Zhou Y. and Chia, M. Y. W. (2008). A low-power ultra-wideband cmos true rms power detector. Microwave Theory and Techniques, IEEE Transactions on, 56(5),Part 1, 1052–1058.
Ratni, M., Huyart, B., Bergeault, E., &Jallet, L. (1998). RF power detector using a silicon MOSFET. IEEE MTT-S Digest, doi:1109/MWSYM.1998.705195.
Townsend, K. A., Haslett, J.W., & Nielsen, J. (2007). A CMOS Integrated Power Detector for UWB.IEEE International Symposium on Circuits and Systems, doi:1109/ISCAS.2007.377987.
Hao, X., Zheng, Y., Tian, F., Zhou, Q., Li, H., Liu, Z., ...& Liao, H. (2019). A Reverse-RSSI Logarithmic Power Detector With+ 35-dBm Maximum Detectable Power in 180-nm CMOS. IEEE Microwave and Wireless Components Letters, 29(9), 610-613.
Qayyum, S., &Negra, R. (2018). Analysis and design of distributed power detectors. IEEE Transactions on Microwave Theory and Techniques, 66(9), 4191-4203.
Stärke, P., Rieß, V., Carta, C., &Ellinger, F. (2018,October). Wideband Amplifier with Integrated Power Detector for 100 GHz to 200 GHz mm-Wave Applications. In 2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS) (pp. 160-163). IEEE.
Vlassis, S., Gialenios, G., Souliotis, G., &Plessas, F. (2019, July). Power Detector Based On Voltage Squaring. In 2019 42nd International Conference on Telecommunications and Signal Processing (TSP) (pp. 477-480). IEEE.
Li, C., Yi, X., Boon, C. C., & Yang, K. (2019). A 34-dB dynamic range 0.7-mW compact switched-capacitor power detector in 65-nm CMOS. IEEE Transactions on Power Electronics, 34(10), 9365-9368.
Venkatasubramanian, R. (2005). High Frequency Continuous-Time Circuits and Built-In-Self-Test Using CMOS RMS Detector.Master of Science Dissertation, Texas A&M University.
Rami, S., Tuni, W., &Eisenstadt, W.R. (2010). Millimeter wave MOSFET amplitude detector. IEEESilicon Monolithic Integrated Circuits in RFSystems (SiRF),doi:1109/SMIC.2010.5422961.
Valdes-Garcia, A., Venkatasubramanian, R., Srinivasan, R., Silva-Martinez, J., &Sinencio E. S. (2005). A CMOS RF rms detector for built in testing of wireless transceivers. 23rd IEEE VLSI Test Symposium, doi:1109/VTS.2005.8.
Yin, Q., Eisenstadt, W. R., Fox, R. M., & Zhang, T. (2005). A translinearrms detector for embedded test of RF ICs. IEEE Trans. on Instrumentation and Measurement, doi:1109/TIM.2005.855105.
Gray, P. R., Hurst, P. J., Lewis, S. H., and Meyer, R. G. (2001). Analysis and Design of Analog Integrated Circuits. J. Wiley & Sons, fourth ed. New York.