مروری بر مدیریت هوشمند انرژی در صنایع نفت و گاز با نانوچندسازه مواد تغییرفازدهنده
محورهای موضوعی : مهندسی شیمی
عزیز باباپور
1
*
,
میلاد مقدم
2
,
محمد شفقتی
3
,
علی شکری
4
,
میلاد محمدنیا
5
,
زینب قربانی
6
1 - . استاد گروه مهندسی شیمی، دانشگاه محقق اردبیلی، اردبیل، ایران.
2 - دانشجوی کارشناسی ارشد گروه مهندسی شیمی، دانشگاه محقق اردبیلی، اردبیل، ایران.
3 - دانشجوی دکتری گروه مهندسی شیمی، دانشگاه محقق اردبیلی، اردبیل، ایران.
4 - دانشجوی کارشناسی ارشد گروه مهندسی شیمی، دانشگاه محقق اردبیلی، اردبیل، ایران.
5 - دانشجوی کارشناسی ارشد گروه مهندسی شیمی، دانشگاه محقق اردبیلی، اردبیل، ایران.
6 - دانشجوی کارشناسی ارشد گروه مهندسی شیمی، دانشگاه محقق اردبیلی، اردبیل، ایران.
کلید واژه: نفت, گاز, مواد تغییرفازدهنده, نانوچندسازهها,
چکیده مقاله :
امروزه باتوجه به افزایش نیاز به انرژی و محدودیت سوختهای فسیلی بهعنوان منابع رو به اتمام و آلاینده محیطزیست، نیاز به منابع انرژی تجدیدپذیر بیشتر از پیش احساس میشود. یکسوم کل انرژی مصرفشده در جامعه را بخش صنعت تشکیل میدهد که بخش چشمگیری از آن در نهایت بهدلیل ناکارآمدی تبدیل به گرمای تلفشده میشود. یکی از انرژیهایی که کاربردی روبه افزایشی دارد، انرژی گرمایی است. برای ذخیرهسازی انرژی گرمایی میتوان از روشهای متفاوتی مانند مواد تغییرفازدهنده استفاده کرد که حین تغییر فاز، انرژی گرمایی را ذخیره و بههنگام نیاز آزاد کند. برای افزایش کارایی از نانوچندسازه مواد تغییرفازدهنده که اثرهای گوناگونی مانند افزایش ظرفیت گرمایی، افزایش ضریب انتقال گرما، پایداری گرمایی و شیمیایی دارند، میتوان در صنایع متفاوت مانند صنایع نفت و گاز استفاده کرد. در این پژوهش، به بررسی انواع ذخیرهسازی انرژی گرمایی با تکیه بر نانوچندسازه مواد تغییرفازدهنده در صنایع نفت و گاز پرداخته شده است. در این راستا، مقایسه بین دو نوع نانوذره در فرایند ذوب مواد تغییرفازدهنده در شرایط متفاوت و بررسی بازده گرمایی آنها صورت پذیرفته است.
Today, due to the increasing demand for energy and the limitations of fossil fuels as energy sources, the need for renewable energy sources is more critical than ever. One-third of the total energy consumed in the society comes from the industrial sector, a significant portion of which is lost due to inefficiencies in waste heat management. Thermal energy is a major contributor to overall energy consumption. To conserve heat energy, various methods, such as phase change materials (PCMs), can be used to store and release thermal energy during phase transitions. To enhance the efficiency of phase change nanocomposites, which offer benefits such as increased heat capacity, improved heat transfer coefficient, and thermal and chemical stability; these materials can be applied in various industries, including the oil and gas sector. This paper investigated different types of thermal energy storage, with a focus on phase change materials in the oil and gas industry. Two types of nanoparticles were compared in the melting process of phase change materials under different conditions and the thermal efficiency of the nanoparticles was evaluated
[1] Motevali A, Hasandust Rostami M, Najafi G, Yan WM. Evaluation and improvement of PCM melting in double tube heat exchangers using different combinations of nanoparticles and PCM (the case of renewable energy systems). Sustainability. 2021;13(19):10675. doi: org/10.3390/su131910675
[2] Rostami S, Afrand M, Shahsavar A, Sheikholeslami M, Kalbasi R, Aghakhani S, Shadloo MS, Oztop HF. A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage. Energy. 2020;211:118698. doi: org/10.1016/j.energy.2020.118698
[3] Telkes M, Raymond E. Storing solar heat in chemicals - A report on the Dover House. Heat Vent. 1949;46:80-86.
[4] Borreguero AM, Rodríguez JF, Valverde JL, Arevalo R, Peijs T, Carmona M. Characterization of rigid polyurethane foams containing microencapsulated Rubitherm® RT27: Catalyst effect. Part II. Journal of Materials Science. 2011;46:347-56. doi: org/10.1007/s10853-010-4824-6
[5] Aly KA, El-Lathy AR, Fouad MA. Enhancement of solidification rate of latent heat thermal energy storage using corrugated fins. Journal of Energy Storage. 2019;24:100785. doi: org/10.1016/j.est.2019.100785
[6] Pauken M, Emis N, Watkins B. Thermal energy storage technology developments. AIP Conference Proceedings. 2007;880(1):412-420. doi: org/10.1063/1.2437481
[7] Golestaneh SI, Karimi G, Babapoor A, Torabi F. Thermal performance of co-electrospun fatty acid nanofiber composites in the presence of nanoparticles. Applied energy. 2018;212:552-64. doi: org/10.1016/j.apenergy.2017.12.055
[8] Huang YX, Shu ZY, Liu ZQ, Cai Y, Wang WW, Zhao FY. Transient cooling performance and parametric characteristic of active–passive coupling cooling system integrated air-conditioner, PV-PCM envelope, and ice storage. Energy and Buildings. (2025);329:115296. doi: org/10.1016/j.enbuild.2025.115296
[9] Koukou MK, Dogkas G, Vrachopoulos MG, Konstantaras J, Pagkalos C, Lymperis K, et al. Performance evaluation of a small-scale latent heat thermal energy storage unit for heating applications based on a nanocomposite organic PCM. ChemEngineering. 2019;3(4):88. doi: org/10.3390/chemengineering3040088
[10] Samimi F, Babapoor A, Azizi M, Karimi G. Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers. Energy. 2016;96:355-71. doi: org/10.1016/j.energy.2015.12.064
[11] Kolosov AE, Kolosova EP, Vanin VV, Khan A. Classical thermoset epoxy composites for structural purposes: Designing, preparation, properties and applications. In: Khan A, Bhawani SA, Asiri AM, Khan I, editors. Thermoset Composites: Preparation, Properties and Applications. Materials Research Foundations. 2018;38:260-99. doi: org/10.21741/9781945291876-9
[12] Jiang L, Zhao L, Zhang R, Zhang W, Ma X, Niu Z, Chen G, Li M. Research of the thermal storage properties of thermally conductive carbon fiber-reinforced paraffin/olefin block copolymer composite phase change materials with thermotropic flexibility. Journal of Energy Storage. 2024;76:109761. doi: org/10.1016/j.est.2023.109761
[13] Shafagati M, Babapoor A, Bamdezh M. Enhancing car battery energy efficiency with phase change material nanocomposites: a concise review. Journal of Renewable Energy and Environment. 2024 Jan 1;11(1):74-88. doi: org/10.30501/jree.2023.388891.1563
[14] Becker O, Cheng YB, Varley RJ, Simon GP. Layered silicate nanocomposites based on various high-functionality epoxy resins: the influence of cure temperature on morphology, mechanical properties, and free volume. Macromolecules. 2003;36(5):1616-25. doi: org/10.1021/ma0213448
[15] Hilding J, Grulke EA, George Zhang Z, Lockwood F. Dispersion of carbon nanotubes in liquids. Journal of Dispersion Science and Technology. 2003 Jan 2;24(1):1-41. doi: org/10.1081/DIS-120017941
[16] Pinnavaia TJ, Beall GW, editors. Polymer-clay nanocomposites. Chichester: John Wiley; c2000.
[17] Babapoor A, Karimi G. Thermal properties measurement and heat storage analysis of paraffin nanoparticles composites phase change material: Comparison and optimization. Applied Thermal Engineering. 2015;90:945-51. doi: org/10.1016/j.applthermaleng.2015.07.083
[18] Umate TB, Sawarkar PD. A review on thermal energy storage using phase change materials for refrigerated trucks: Active and passive approaches. Journal of Energy Storage. 2024;75:109704. doi: org/10.1016/j.est.2023.109704
[19] Babapoor A, Karimi G, Sabbaghi S. Thermal characteristic of nanocomposite phase change materials during solidification process. Journal of Energy Storage. 2016;7:74-81. doi: org/10.1016/j.est.2016.05.006
[20] Hussain M, Varley RJ, Mathys Z, Cheng YB, Simon GP. Effect of organo‐phosphorus and nano‐clay materials on the thermal and fire performance of epoxy resins. Journal of Applied Polymer Science. 2004;91(2):1233-53. doi: org/10.1002/app.13267
[21] Ray SS, Okamoto M. Biodegradable polylactide and its nanocomposites: opening a new dimension for plastics and composites. Macromolecular Rapid Communications. 2003;24(14):815-40. doi: org/10.1002/marc.200300008
[22] Barbosa RV, Baumhardt‐Neto R, Mauler RS, Gorga CJ, Tedesco A. Use of pyrolyzed oil shale as filler in poly (ethylene‐co‐vinyl acetate) with different vinyl acetate contents. Journal of Applied Polymer Science. 2002;84(8):1544-55. doi: org/10.1002/app.10494
[23] Varleyl R, Leong KH. Opportunities for nanocomposites in the oil & gas industry. In: L. Ye, Y.-W. Mai, Z. Su, editors. Composite Technologies for 2020. UK: Woodhead Publishing; 2004. P. 557-562. doi: org/10.1016/B978-1-85573-831-7.50096-1
[24] Tay NH, Belusko M, Bruno F. Experimental investigation of tubes in a phase change thermal energy storage system. Applied energy. 2012;90(1):288-97. doi: org/10.1016/j.apenergy.2011.05.026
[25] Tay NH, Belusko M, Bruno F. Experimental investigation of tubes in a phase change thermal energy storage system. Applied energy. 2012;90(1):288-97. doi: org/10.1016/j.apenergy.2011.05.026
[26] Ahmadi R, Hosseini MJ, Ranjbar AA, Bahrampoury R. Phase change in spiral coil heat storage systems. Sustainable Cities and Society. 2018;38:145-57. doi: org/10.1016/j.scs.2017.12.026
[27] Kabbara M, Groulx D, Joseph A. A parametric experimental investigation of the heat transfer in a coil-in-tank latent heat energy storage system. International Journal of Thermal Sciences. 2018;130:395-405. doi: org/10.1016/j.ijthermalsci.2018.05.006
[28] Kuta M, Matuszewska D, Wójcik TM. Designs of PCM based heat exchangers constructions for thermal energy storage tanks–examples and case study for selected design. InE3S Web of Conferences 2018 (Vol. 70, p. 01010). EDP Sciences. doi: org/10.1051/e3sconf/20187001010
[29] Kabbara MJ, Abdallah NB. Experimental investigation on phase change material based thermal energy storage unit. Procedia Computer Science. 2013;19:694-701. doi: org/10.1016/j.procs.2013.06.092
[30] Prieto MM, González B, Granado E. Thermal performance of a heating system working with a PCM plate heat exchanger and comparison with a water tank. Energy and Buildings. 2016;122:89-97. doi: org/10.1016/j.enbuild.2016.03.078
[31] Vajjha RS, Das DK. Experimental determination of thermal conductivity of three nanofluids and development of new correlations. International Journal of Heat and Mass Transfer. 2009;52(21-22):4675-82. doi: org/10.1016/j.ijheatmasstransfer.2009.06.027
[32] Vajjha RS, Das DK, Namburu PK. Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator. International Journal of Heat and fluid flow. 2010;31(4):613-21. doi: org/10.1016/j.ijheatfluidflow.2010.02.016
[33] Rostami MH, Najafi G, Motevalli A, Sidik NA, Harun MA. Evaluation and improvement of thermal energy of heat exchangers with SWCNT, GQD nanoparticles and PCM (RT82). Journal of Advanced Research in Fluid Mechanics and Thermal Sciences. 2021;79(1):153-68. doi: org/10.37934/arfmts.79.1.153168
[34] Yao J, Zhu P, Guo L, Duan L, Zhang Z, Kurko S, Wu Z. A continuous hydrogen absorption/desorption model for metal hydride reactor coupled with PCM as heat management and its application in the fuel cell power system. International Journal of Hydrogen Energy. 2020;45(52):28087-99. doi: org/10.1016/j.ijhydene.2020.05.089
[35] Busqué R, Torres R, Grau J, Roda V, Husar A. Effect of metal hydride properties in hydrogen absorption through 2D-axisymmetric modeling and experimental testing in storage canisters. International journal of hydrogen energy. 2017;42(30):19114-25. doi: org/10.1016/j.ijhydene.2017.06.125
[36] Royo P, Acevedo L, Ferreira VJ, García-Armingol T, López-Sabirón AM, Ferreira G. High-temperature PCM-based thermal energy storage for industrial furnaces installed in energy-intensive industries. Energy. 2019;173:1030-40. doi: org/10.1016/j.energy.2019.02.118
[37] Chaise A, Marty P, de Rango P, Fruchart D. A simple criterion for estimating the effect of pressure gradients during hydrogen absorption in a hydride reactor. International Journal of Heat and Mass Transfer. 2009;52(19-20):4564-72. doi: org/10.1016/j.ijheatmasstransfer.2009.03.052
[38] Patankar SV. Numerical heat transfer and fluid flow. Boca Raton: CRC Press; 1980. doi: org/10.1201/9781482234213
[39] Rathod MK, Kanzaria HV. A methodological concept for phase change material selection based on multiple criteria decision analysis with and without fuzzy environment. Materials & Design. 2011;32(6):3578-85. doi: org/10.1016/j.matdes.2011.02.040
[40] Jie L, Zhang J, Fan Y, Yu Z, Pan W. A review of composite phase change materials used in battery thermal management systems. Journal of Energy Storage. 2025;112:115579. doi: org/10.1016/j.est.2025.115579
[41] Amiri H, Babapoor A, Fallahi-Samberan M, Azimi N, Hadidi A. Simulation and optimization of energy in oil storage tanks using nanocomposite of phase change materials by Computational Fluid Dynamics. Iranian Journal of Chemical Engineering (IJChE). 2023;20(2):62-86. doi: org/10.22034/ijche.2023.399371.1491
[42] Amiri H, Azimi N, Amin H. Optimization of energy in oil pipelines covered with nanofibers of phase change materials using CFD. Iran. J. Chem. Chem. Eng.(IJCCE) Research Article Vol. 2024;43(2). doi: org/10.30492/ijcce.2023.2001283.6000
[43] Sathishkumar A, Cheralathan M. Charging and discharging processes of low capacity nano-PCM based cool thermal energy storage system: An experimental study. Energy. 2023;263:125700. doi: org/10.1016/j.energy.2022.125700
[44] Sundriyal A, Verma P, Varshney L. Numerical study of the melting rate enhancement of nano phase change material in a modified shell and tube heat exchanger. Journal of Energy Storage. 2024;84:110859. doi: org/10.1016/j.est.2024.110859