حذف تولوئن از هوای آلوده به روش اکسایش کاتالیستی در دمای پایین در حضور نانوکاتالیست Pd/Al2O3-Clinoptilolite تقویتشده با CeO2
محورهای موضوعی : شیمی تجزیه
1 - کارشناس ارشد مهندسی شیمی، دانشکده مهندسی شیمی، دانشگاه صنعتی سهند، شهر جدید سهند، تبریز، ایران
2 - استاد مهندسی شیمی، مرکز تحقیقات راکتور و کاتالیست، دانشگاه صنعتی سهند، شهر جدید سهند، تبریز، ایران
کلید واژه: سونوشیمی, Pd/Al2O3-Clinoptilolite-CeO2, اکسایش کامل, تولوئن, هوای آلوده,
چکیده مقاله :
برای حذف یا کاهش ترکیبات فرار آلی (VOCs) که بخش عمدهای از آلایندههای هوا هستند، از فناوریهایی مانند اکسایش گرمایی و کاتالیستی یا تصفیه زیستی استفاده میشود. امروزه استفاده از نانوکاتالیستها در حذف آلایندهها از محیطزیست بسیار موردتوجه است. در این پژوهش پایه کامپوزیتی Al2O3/CeO2/Clinoptilolite تهیه، سپس فاز فعال پالادیم با امواج فراصوت بر آن نشانده شد. امواج فراصوت باعث توزیع مناسب فلز فعال و بهبود ویژگیهای ساختاری در نانوکاتالیستها میشود. هدف از انتخاب این کاتالیست بهرهگیری همزمان از سطح ویژه بالای آلومینا، سطح اسیدی کلینوپتیلولیت و ویژگیهای منحصربهفرد CeO2 است. حضور CeO2 در کاتالیستها موجب افزایش ذخیرهسازی اکسیژن، بهبود پایداری گرمایی کاتالیست و همچنین توزیع مناسب فلز پالادیم بر پایه میشود. ویژگیهای نمونهها با روشهای پراش پرتو ایکس (XRD)، میکروسکوپ الکترونی روبشی گسیل میدانی (FESEM)، طیفسنجی تفکیک انرژی (EDS)، طیفسنجی فروسرخ تبدیل فوریه (FTIR) برسی شدند. برای یافتن مساحت سطح ویژه کاتالیستهای سنتز شده از روش BET استفاده شد. آزمون واکنشگاهی نانوکاتالیستها با استفاده از یک پایلوت اکسایش کاتالیستی و کروماتوگرافی گازی (GC) انجام شد. نتایج XRD نشان داد که بلورهای موجود در کاتالیستها دارای ابعاد نانومتری هستند. نتایج نشان داد که نانوکاتالیستهای تهیهشده دارای سطح ویژه بالایی هستند. همچنین، نتایج ابتدایی آزمونهای واکنشگاهی تأیید کرد که نانوکاتالیستها دارای فعالیت و مقدار جذب بالایی در حذف تولوئن هستند.
Technologies such as thermal and catalytic oxidation or biological treatment are used to remove or reduce volatile organic compounds (VOCs) which are a major part of air pollutants. Nowadays use of nanocatalysts to remove environmental pollutants are highly regarded. In this work, the composite of Al2O3/CeO2/Clinoptilolite was synthesized, and then palladium active phase has been loaded on it by ultrasonic irradiation. Ultrasonic irradiation causes the profit description of active metal and improves structural properties of nanocatalysts. The purpose of using this catalyst is to take advantage of high specific surface area of alumina, acidic characteristic of clinoptilolite, and unique properties of CeO2 at the same time. Existence of CeO2 in catalyst causes increasing storage of oxygen, improving thermal and structural stability of composite and appropriate distribution of palladium metal on it. Characteristics of nanocatalysts are determined by XRD, FESEM, BET, FTIR, and EDX analyses. Gas chromatography and catalytic oxidation pilot are used for evaluation of catalytic performance toward toluene abatement from polluted air. XRD analysis results showed that the nanocatalysts have nanometer dimension crystals. BET analysis showed that the synthesized nanocatalysts have high specific surface areas. The reactor test results confirmed that the composite nanocatalysts have activity and absorption ability on toluene abatement.
[1] Yang, H.; Deng, J.; Liu, Y.; Xie, S.; Wu, Z.; Dai, H.; Journal of Molecular Catalysis A: Chemical 414, 9-18, 2016.
[2] Rezaei, F.; Moussavi, G.; Bakhtiari, A.R.; Yamini, Y.; Journal of Hazardous Materials 306, 348-358, 2016.
[3] Chlala, D.; Giraudon, J.M.; Nuns, N.; Lancelot, C.; Vannier, R.-N.; Labaki, M.; Lamonier, J.F.; Applied Catalysis B: Environmental 184, 87-95, 2016.
[4] Abbasi, Z.: Haghighi, M.; Fatehifar, E.; Rahemi, N.; Asia-Pacific Journal of Chemical Engineering 7, 868-876, 2012.
[5] Abbasi, Z., Haghighi, M.; Fatehifar, E.; Saedy, S.; International Journal of Chemical Reactor Engineering 9, 1-19, 2011.
[6] Wu, Z.; Deng, J.; Xie, S.; Yang, H.; Zhao, X.; Zhang, K.; Lin, H.; Dai, H.; Guo, G.; Microporous and Mesoporous Materials 224, 311-322, 2016.
[7] Park, E.J.; Lee, J.H.; Kim, K.-D.; Kim, D.H.; Jeong, M.-G.; Kim, Y.D.; Catalysis Today 260, 100-106, 2016.
[8] Abbasi, Z.; Haghighi, M.; Fatehifar, E.; Saedy, S.; Journal of Hazardous Materials 186, 1445-1454, 2011.
[9] Asgari, N.; Haghighi, M.; Shafiei, S.; Environmental Progress and Sustainable Energy 32, 587-597, 2013.
[10] Asgari, N.; Haghighi, M.; Shafiei, S.; Journal of Chemical Technology and Biotechnology 88, 690-703, 2013.
[11] Rahmani, F.; Haghighi, M.; Estifaee, P.; Microporous and Mesoporous Materials 185, 213-223, 2014.
[12] Viswanadham, N.; Saxena, S.K.; Al-Muhtaseb, A.A.H.; Materials Today Chemistry 3, 37-48, 2017.
[13] Li, Y.; Fan, Y.; Jian, J.; Yu, L.; Cheng, G.; Zhou, J.; Sun, M.; Catalysis Today 281, Part 3, 542-548, 2017.
[14] Jiang, Y.; Xie, S.; Yang, H.; Deng, J.; Liu, Y.; Dai, H.; Catalysis Today 281, Part 3, 437-446, 2017.
[15] Yosefi, L.; Haghighi, M.; Allahyari, S.; Shokrani, R.; Ashkriz, S.; Advanced Powder Technology 26, 602-611, 2015.
[16] Zhou, Z.; Ouyang, J.; Yang, H.; Tang, A.; Applied Clay Science 121-122, 63-70, 2016.
[17] Zeng, F.; Hohn, K.L.; Applied Catalysis B: Environmental 182, 570-579, 2016.
[18] Sakai, M.; Nagai, Y.,; Aoki, Y.; Takahashi, N.; Applied Catalysis A: General 510, 57-63, 2016.
[19] Aghaei, E.; Haghighi, M.; Journal of Porous Materials 22, 187-200, 2015.
[20] Baneshi, J.; Haghighi, M.; Jodeiri, N.; Abdollahifar, M.; Ajamein, H.; Ceramics International 40, 14177-14184, 2014.
[21] Khajeh Talkhoncheh, S.; Haghighi, M.; Journal of Natural Gas Science and Engineering 23, 16-25, 2015.
[22] Baneshi, J.; Haghighi, M.; Jodeiri, N.; Abdollahifar, M.; Ajamein, H., Energy Conversion and Management 87, 928-937, 2014.
[23] Jamalzadeh, Z.; Haghighi, M.; Asgari, N.; Frontiers of Environmental Science & Engineering 7, 365-381, 2013.
[24] Parvas, M.; Haghighi, M.; Allahyari, S.; Environmental Technology 35, 1140-1149, 2014.
[25] Lin, S.S.; Chen, C.L.,; Chang, D.J.; Chen, C.C.; Water Research 36, 3009-3014, 2002.
[26] Soylu, G.S.P.; Ozcelik, Z.; Boz, I.; Chemical Engineering Journal 162, 380-387, 2010.
[27] Okumura, K.; Matsumoto, S.; Nishiaki, N.; Niwa, M.; Applied Catalysis B: Environmental 40, 151-159, 2003.
[28] Tang, X.; Chen, J.; Huang, X.; Xu, Y.; Shen, W.; Applied Catalysis B: Environmental 81, 115-121, 2008.
[29] Abdollahifar, M.; Haghighi, M.; Babaluo, A.A.; Khajeh Talkhoncheh, S.; Ultrasonics Sonochemistry 31, 173-183, 2016.
[30] Yahyavi, S.R.; Haghighi, M.; Shafiei, S.; Abdollahifar, M.; Rahmani, F.; Energy Conversion and Management 97, 273-281, 2015.
[31] Sadeghi, S.; Haghighi, M.; Estifaee, P.; Journal of Natural Gas Science and Engineering 24, 302-310, 2015.
[32] Askari, S.; Halladj, R.; Sohrabi, M.; Microporous and Mesoporous Materials 163, 334-342, 2012.
[33] Yosefi, L.; Haghighi, M.; Allahyari, S.; Ashkriz, S.; Process Safety and Environmental Protection 95, 26-37, 2015.
[34] Ates, A.; Hardacre, C.; Journal of colloid and interface science 372, 130-140, 2012.
[35] Trovarelli, A.; Catalysis Reviews 38, 439-520, 1996.
[36] Scholes, F.; Soste, C.; Hughes, A.; Hardin, S.; Curtis, P.; Applied Surface Science 253, 1770-1780, 2006.
[37] Yosefi, L.; Haghighi, M.; Allahyari, S.; Ashkriz, S.; Journal of Chemical Technology & Biotechnology 90, 765-774, 2015.
[38] Rahmani, F.; Haghighi, M.; Amini, M.; Journal of Industrial and Engineering Chemistry 31, 142-155, 2015.
[39] Rahmani, F.; Haghighi, M.; Mahboob, S.; Ultrasonics Sonochemistry 33, 150-163, 2016.
[40] Aghamohammadi, S.; Haghighi, M.; Karimipour, S.; Journal of Nanoscience and Nanotechnology 13, 4872-4882, 2013.
[41] Saedy, S.; Haghighi, M.; Amirkhosrow, M.; Particuology 10, 729-736, 2012.
[42] Shikunov, B.; Lafer, L.; Yakerson, V.; Mishin, I.; Rubinshtein, A.; Russian Chemical Bulletin 21, 201-203, 1972.
[43] Korkuna, O.; Leboda, R.; Vrublevs’ka, T.; Gun’ko, V.; Ryczkowski, J.; Microporous and Mesoporous Materials 87, 243-254, 2006.
[44] Khoshbin, R.; Haghighi, M.; Journal of Nanoscience and Nanotechnology 13, 4996-5003, 2013.
[45] Aghamohammadi, S.; Haghighi, M.; Charghand, M.; Materials Research Bulletin 50, 462-475, 2014.
[46] Spivey, J.J.; Industrial & Engineering Chemistry Research 26, 2165-2180, 1987.
[47] Abbasi, Z.; Haghighi, M.,; Fatehifar, E.; Saedy, S.; International Journal of Chemical Reactor Engineering 9, 1-19, 2011.
_||_