بررسی اثرهای پادباکتری نمد نانوفیبری چندسازه پلی وینیل الکل/پلی وینیل پیرولیدن حاوی داروی کلیندامایسین
محورهای موضوعی : شیمی پلیمرسارا یوسفی مقدم 1 , حکیمه زیادی 2 * , ملک حکمتی 3 , فاطمه السادات سیدی 4
1 - دانشجوی کارشناسی ارشد شیمی آلی، مرکز تحقیقات مواد اولیه دارویی، دانشگاه علوم پزشکی آزاد اسلامی تهران، تهران، ایران
2 - استادیار گروه شیمی آلی، دانشکده شیمی دارویی، دانشگاه علوم پزشکی آزاد اسلامی تهران، تهران، ایران.
3 - دانشیار گروه شیمی آلی، دانشکده شیمی دارویی، دانشگاه علوم پزشکی آزاد اسلامی تهران، تهران، ایران.
4 - دانشجوی دکتری شیمی آلی، مرکز تحقیقات مواد اولیه دارویی، دانشگاه علوم پزشکی آزاد اسلامی تهران، تهران، ایران
کلید واژه: نانوفیبر, کلیندامایسین, استافیلوکوکوس اورئوس, سودوموناس آئروجینوزا, آسینتوباکتر. ,
چکیده مقاله :
با توجه به گسترش و اهمیت نانوفیبرها در زمینه علوم دارویی و قابلیت استفاده از آنها بهعنوان پچ های پوستی حاوی داروهای موضعی، در این پژوهش، با افزودن کلیندامایسین به بسپارهای پلی وینیل الکل/پلی وینیل پیرولیدن و سپس الکتروریسی محلول بسپار، نانوفیبرهای حامل کلیندامایسین بهدست آمد. نانوفیبرهای به دست آمده با طیف سنجی فروسرخ تبدیل فوریه (FTIR)، میکروسکوپ نیروی اتمی (AFM)، میکروسکوپ الکترونی روبشی گسیل میدانی (FESEM)، طیف¬سنجی تفکیک انرژی (EDS)، نگاشت عنصری و آزمون زاویه تماس بررسی شدند. ﺑﺮرﺳﯽ ﻣﺎﻫﯿﺖ ﭘﯿﻮﻧـﺪ بین داروی کلیندامایسین با بستر پلی وینیل الکل/پلی وینیل پیرولیدن با نظریه کوانتومی اتم در مولکول (QTAIM) انجام شد. اثرهای پادباکتری محلول بسپار الکتروریسی نشده و نمدهای نانوفیبری به دست آمده بر سویه های استاندارد باکتری های سودوموناس آئروجینوزا، آسینتوباکتر و استافیلوکوکوس اورئوس بررسی شد. برپایه نتیجه های به دست آمده باکتری سودوموناس آئروجینوزا در برابر محلول بسپار الکتروریسی نشده و نیز نمد نانوفیبری کلیندامایسین مقاوم است. باکتری آسینتوباکتر در برابر محلول بسپار مقاوم است، ولی نانوفیبر کلیندامایسین بر آن اثر متوسطی دارد. نمد نانوفیبری کلیندامایسین و محلول بسپار الکتروریسی نشده بر باکتری استافیلوکوکوس اورئوس بسیار موثر هستند. بنابراین، نمد نانوفیبری کلیندامایسین به عنوان چسب پوستی برای درمان عفونتهای ناشی از باکتری استافیلوکوکوس ارئوس و آسینتوباکتر می تواند به کاررود. همچنین، محلول بسپار به عنوان یک محلول دارویی در درمان موضعی عفونت ناشی از باکتری های استافیلوکوکوس اورئوس می تواند مفید واقع شود.
Due to the expansion and importance of nano fibers in the field of pharmaceutical sciences and the ability to use them as skin patches, in this study, nanofibers carrying clindamycin was obtained from adding pure clindamycin to poly(vinyl alcohol) and poly(vinyl pyrrolidone) polymers fallowed by electrospinning of polymeric solution. The obtained nanofibers were analyzed by Fourier transform infrared spectroscopy (FTIR), atomic force microscope (AFM), scanning electron microscope (SEM), Energy dispersive X-ray spectroscopy (EDS), Element Mapping (EMPA), and contact angle analysis. The nature of the bond between clindamycin drug and poly(vinyl alcohol)/poly(vinyl pyrrolidone) substrate was investigated using the quantum theory of atoms in molecules (QTAIM). Antibacterial effects of non-electrospun polymer solution and obtained nanofibers mats were investigated on standard strains of Pseudomonas aeruginosa, Acinetobacter and Staphylococcus aureus bacteria. According to the obtained results, Pseudomonas aeruginosa bacteria was resistant to non-electrospun polymer solution and clindamycin nanofibrous mats. Acinetobacter bacteria was resistant to polymer solution, but clindamycin nanofiber had moderate effect on it. Clindamycin nanofibers mats and non-electrospun polymer solution were very effective against Staphylococcus aureus bacteria. Therefore, clindamycin nanofibrous mats can be used as transdermal patches to treat infections caused by Staphylococcus aureus and Acinetobacter bacteria. In addition, the polymer solution can be useful as a medicinal solution in the transdermal treatment of Staphylococcus aureus bacterial infections.
[1] Li Y, Dong T, Li Z, Ni S, Zhou F, Alimi OA, Chen S, Duan B, Kuss M, Wu S. Review of advances in electrospinning-based strategies for spinal cord regeneration. Mater Today Chem. 2022;24:100944. doi: 10.1016/j. mtchem.2022.100944
[2] Han WH, Wang MQ, Yuan JX, Hao CC, Li CJ, Long YZ, Ramakrishna S. Electrospun aligned nanofibers: A review. Arab J Chem. 2022;15(11):104193. doi: 10.1016/j.arabjc. 2022.104193
[3] Kanjwal MA, Ghaferi AA. Hybrid nanofibers opportunities and frontiers – A review. J Environ Chem Eng. 2022;10(6):108850. doi: 10.1016/j.jece.2022.108850
[4] Sakpal D, Gharat S, Momin M. Recent advancements in polymeric nanofibers for ophthalmic drug delivery and ophthalmic tissue engineering. Biomat Adv. 2022;141:213124. doi: 10.1016/j.bioadv. 2022.213124
[5] Kumar R, Badogu K, Kour K, Farooq S, Singh R. Hydrogel-Nanofiber composites for tissue reconstruction applications: A state of the art review. In: Hashmi MSJ, editor. Encyclopedia of Materials: Plastics and Polymers. Amsterdam: Elsevier; 2022. p. 306-316.
[6] El-Aswar EI, Ramadan H, Elkik H, Taha AG. A comprehensive review on preparation, functionalization and recent applications of nanofiber membranes in wastewater treatment. J Environ Manag. 2022;301:113908. doi: 10.1016/j.jenvman. 2021.113908
[7] Min T, Zhou L, Sun X, Du H, Zhu Z, Wen Y. Electrospun functional polymeric nanofibers for active food packaging: A review. Food Chem. 2022;391:133239. doi: 10.1016/j. foodchem.2022.133239
[8] Yan J, Su Q, Xiao W, Wu Z, Chen L, Tang L, Zheng N, Gao J, Xue H. A review of nanofiber membranes for solar interface evaporation. Desalination, 2022;531:115686. doi: 10.1016/j.desal.2022.115686
[9] Braghirolli DI, Steffens D, Pranke P, Electrospinning for regenerative medicine: A review of the main topics. Drug Discov. Today. 2014;19(6):743-753. doi: 10.1016/j. drudis.2014.03.024
[10] Balusamy B, Celebioglu A, Senthamizhan A, Uyar T. Progress in the design and development of “fast-dissolving” electrospun nanofibers based drug delivery systems-A systematic review. J Control Release. 2020;326:482-509. doi: 10.1016 /j.jconrel.2020.07.038
[11] Wu S, Dong T, Li Y, Sun M, Qi Y, Liu J, Kuss MJ, Chen S, Duan B. State-of-the-art review of advanced electrospun nanofiber yarn-based textiles for biomedical applications. Appl Mater Today. 2022;27:101473. doi: 10.1016/j.apmt. 2022.101473
[12] Ghafoor B, Aleem A, Najabat MA, Mir M. Review of the fabrication techniques and applications of polymeric electrospun nanofibers for drug delivery systems. J Drug Deliv Sci Technol. 2018;48:82-87. doi: 10.1016/j.jddst.2018.09.005
[13] Aynali F, Balci H, Doganci E, Bulus E, Production and characterization of non-leaching antimicrobial and hydrophilic polycaprolactone based nanofiber mats. Eur Polym J. 2021;149:110368. doi: 10.1016/j.eurpolymj.2021.110368
[14] Houang ZM, Zhang YZ, Ramakrishna S, Lim CT. Electrospinning and mechanical characterization of gelatin nanofibers. Polymer. 2004,45(15):5361-5368. doi: 10.1016/j.polymer.2004.04.005
[15] Hulupi M, Haryadi H. Synthesis and characterization of electrospinning PVA nanofiber-crosslinked by glutaraldehyde. Mater Today: Proc. 2019;13:199-204. doi: 10.1016/j.matpr.2019.03.214
[16] Aslam M, Kalyar MMA, Zulfigar AR. Polyvinyl alcohol: A review of research status and use of polyvinyl alcohol based nanocomposites. Polym Eng Sci. 2018;58(12):2119-2132. doi: 10.1002/pen. 24855
[17] Yu H, Xu X, Chen X, Hao J, Jing X. Medicated wound dressings based on poly(vinyl alcohol)/poly(N-vinyl pyrrolidone)/chitosan hydrogels. J Appl Polym Sci. 2006;101(4):2453-2463. doi: 10.1002/app. 23344
[18] Sill TJ, Von Recum HA. Electrospinning: Applications in drug delivery and tissue engineering. Biomater. 2008;29:1989-2006. doi: 10.1016/j.biomaterials.2008.01.011
[19] Tarun K, Gobi N. Calcium alginate/PVA blended nanofibre matrix for wound dressing. Indian J Fibre &Textile Res. 2012; 37:127-132.
[20] Hadipour-Goudarzi E, Montazer M, Latifi M, Ghare Aghaji AA. Electrospinning of chitosan/sericin/PVA nanofibers incorporated with in situ synthesis of nano silver. Carbohydr Polym. 2014;113:231-239. doi: 10.1016/j.carbpol.2014.06.082
[21] Li X, Kanjwal MA, Lin L, Chronakis IS, Electrospun polyvinyl-alcohol nanofibers as oral fast-dissolving delivery system of caffeine and riboflavin. Colloids Surf B: Biointerfaces. 2013;103:182-188. doi: 10.1016/j.colsurfb.2012.10.016
[22] Mabrouk M, Mostafa AA, Oudadesse H, Mahmoud AA, El-Gohary MI. Effect of ciprofloxacin incorporation in PVA and PVA bioactive glass composite scaffolds. Ceram Inter. 2013;40(3):4833-4845. doi: 10.1016/j.ceramint.2013.09.033
[23] Zhang W, Chen M, Diao G. Electrospinning β-cyclodextrin/poly(vinyl alcohol) nanofibrous membrane for molecular capture. Carbohydr Polym. 2011;86(3): 1410-1416. doi: 10.1016/j. carbpol. 2011.06.062
[24] Won JJ, Nirmala R, Navamathavan R, Kim HY. Electrospun core–shell nanofibers from homogeneous solution of poly(vinyl alcohol)/bovine serum albumin. Int J Biol Macromol. 2012;50(5):1292-1298. doi: 10.1016/j.ijbiomac.2012.04.007
[25] Kenawy ER, Abdel-Hay F, El-Newehy MH, Wnek GE. Controlled release of ketoprofen from electrospun poly(vinyl alcohol) nanofibers. Mater Sci Eng. 2007;459(1-2):390-396. doi: 10.1016/j.msea.2007.01. 039
[26] Sun XZ, Williams GR, Hou XX, Zhu LM. Electrospun curcumin-loaded fibers with potential biomedical applications. Carbohydr Polym. 2013;94(1):147–153. doi: 10.1016/j. carbpol.2012.12.064
[27] Nagy ZK, Nyúl K, Wagner I, Molnár K, Marosi Gy. Electrospun water soluble polymer mat for ultrafast release of Donepezil HCl. Express Polym Lett. 2010;4(12):763–772. doi: 10.3144/expresspolymlett.2010.92
[28] Wang J, Hao S, Luo T, Zhou T, Yang X, Wang B. Keratose/poly(vinyl alcohol) blended nanofibers: Fabrication and biocompatibility assessment. Mater Sci Eng: C. 2017;72:212–219. doi: 10.1016/j.msec.2016.11.071
[29] Sanki UK, Mandai BK, Chandrakala V. Comparative pharmacokinetics study of two different clindamycin capsule formulations: A randomized, two-period, two-sequence, two-way crossover clinical trial in healthy volunteers. Arzneimittel-forschung. 2011;61(9):538-543. doi: 10.1055/s-0031-1296241
[30] Oertel R, Schubert S, Muhlbauer V, Buttner B, Marx C, Kirch W. Determination of clindamycin and its metabolite clindamycin sulfoxide in diverse sewage samples. Environ Sci Pollut Res Int. 2014;21(20):11764–11769. doi: 10.1007/ s11356-013-2333-2
[31] Raney PM, Tenover FC, Carey RB, Mcgowan JE, Pater JB. Investigation of inducible clindamycin and telithromycin resistance in isolates of β-hemolytic streptococci. Diagn Microbiol Infect Dis. 2006;55(3):213-218. doi: 10.1016/j. diagmicrobio.2006.01.013
[32] Mark G, Papich. Saunders handbook of veterinary drugs, Fourth ed. North Carolina: Elsevier; 2016.
[33] Rahmani F, Ziyadi H, Baghali M, Luo H, Ramakrishna S. Electrospun PVP/PVA nanofiber mat as a novel potential transdermal drug-delivery system for buprenorphine: A solution needed for pain management. Appl Sci. 2021;11(6):2779-28000. doi: 10.3390/app11062779
[34] Baghali M, Ziyadi H, Faridi Majidi R. Fabrication and characterization of core–shell TiO2-containing nanofibers of PCL-zein by coaxial electrospinning method as an erythromycin drug carrier. Polym Bull. 2021;79(3):1729-1749. doi: 10.1007/s00289 -021-03591-3
[35] Nadem S, Ziyadi H, Hekmati m, Baghali M. Cross-linked poly(vinyl alcohol) nanofibers as drug carrier of clindamycin. Polym Bull. 2020;77(11):5615-5629. doi: 10.1007/s 00289-019-03027-z
[36] Desiraju GR. Hydrogen Bridges in Crystal Engineering: Interactions without Borders. Acc Chem Res. 2002;35(7):565-573. doi: 10.1021/ar010054t
[37] Bader RFW. Atoms in Molecular: A Quantum Theory. Oxford: Oxford University Press; 1990.
[38] Bushmarinov IS, Lyssenko KA, Antipin M. Atomic energy in the 'Atoms in Molecules' theory and its use for solving chemical problems. Russ Chem Rev. 2009;78(4):283-292. doi: 10.1070/RC2009v078n04ABEH 004017
[39] Popelier PLA. Atoms in Molecules: An Introduction. Harlow: Prentice Hall, 2000.