بررسی گوگردزدایی اکسایشی میعانات گازی با کاتالیست پلی اکسومولیبدات
محورهای موضوعی : مهندسی شیمیزهره طاهرخانی 1 * , محمدحسن قطمیر 2 , محمود انداچه 3
1 - استادیار گروه پژوهشی طراحی فرایندهای شیمیایی، جهاد دانشگاهی، دانشکده فنی، دانشگاه تهران، تهران، ایران
2 - کارشناس شیمی دانشکده شیمی، واحد امیدیه، دانشگاه آزاد اسلامی، امیدیه، ایران
3 - دانشجوی دکترا دانشکده شیمی، پردیس البرز، دانشگاه تهران، تهران، ایران
کلید واژه: کاتالیست, میعانات گازی, گوگردزدایی اکسایشی, پلیاکسومتالات,
چکیده مقاله :
وجود ترکیب های گوگردی در میعانات گازی یکی از معضل های موجود در زمینه سوخت است. در این پژوهش، فرایند گوگردزدایی اکسایشی ((ODS میعانات گازی با کاتالیست پلی اکسومولیبدات به طور کامل مطالعه شد. کاتالیست با روشی ساده تهیه و با روش های FTIR و BET شناسایی شد. فعالیت کاتالیستی نمونه تهیه شده در بازده فرایند گوگردزدایی اکسایشی (ODS) میعانات گازی با گوگرد اولیه ppm3780 در حضور اکسیدکننده آب اکسیژنه بررسی و تاثیر مقدار کاتالیست، عامل اکسیدکننده و عامل های عملیاتی شامل دما، زمان و نوع حلال استخراجی و نیز عامل اثربخشی مطالعه شد. بیشترین مقدار حذف برابر با 97/4 % و عامل اثربخشی 8/11در شرایط بهینه مقدار کاتالیست 0/02 درصد وزنی نسبت به میعانات، مقدار عامل اکسیدکننده آب اکسیژنه (50 %) 6/64 درصد وزنی نسبت به میعانات، دمای °C70 و زمان 3 ساعت و استخراج با حلال دی متیل فرمامید به دست آمده و مقدار گوگرد نهایی از ppm3780 به ppm100 کاهش یافت. نتیجه ها نشان داد با افزایش دما و مقدار کاتالیست، بازده جداسازی گوگرد ابتدا افزایش و سپس کاهش می یابد. در حالی که تاثیر زمان بر بازده جداسازی روند افزایشی دارد. همچنین، سینتیک و سازوکار واکنش موردبحث قرار گرفت و میانگین ثابت سرعت گوگردزدایی ODS برابر با min-1 0/022 به دست آمد.
The presence of sulfur compounds in gas condensate is one of the problems in the field of fuel. In this study, the oxidative desulfurization (ODS) process of gas condensate of Ilam refinery was completely studied using molybdenum-based polyoxometalates catalyst. The catalyst was synthesized using a simple method and characterized by FTIR and BET tests. The ODS catalytic activity of gas condensate with total sulfur of 3780 ppm was evaluated in the presence of peroxide hydrogen. The effect of catalyst amount, oxidizing agent amount and operating parameters including temperature, time and type of extraction solvent was investigated on the efficiency of ODS process and solvent effectiveness factor. The results showed that the highest conversion and effectiveness factor were 97.4 % and 8.11, respectively under optimal conditions of catalyst amount of 0.02 wt.% relative to the condensate, the oxidizing agent amount of 6.64 wt.%, temperature of 70 °C and reaction time of 3 h in the presence of dimethylformamide solvent. At this condition, the total sulfur content of the gas condensate reduced from 3780 to 100 ppm. The results showed that the efficiency of ODS process is firstly increased by increasing the temperature and catalyst molar ratio, and then the inverse trend is observed. It was concluded that the reaction time had a positive effect on ODS efficiency. Also, the kinetics and mechanism of ODS reaction were discussed and the mean constant desulfurization rate of ODS was obtained to be 0.022 min-1.
[1] Lei, W.; Wenya, W.; Mominou, N.; Liu, L.; Li, S.; Appl. Catal. B 193, 180–188, 2016.
[2] Campos-Martin, J.M.; Capel-Sanchez, M.C.; Fierro, J.L.G.; Green Chem. 6, 557–562, 2004.
[3] Mondal, S.; Hangun-Balkir, Y.; Alexandrova, L.; Link, D.; Howard, B.; Zandhuis, P.; Catal. Today. 116, 554–561, 2016.
[4] Triantafyllidis, S.K.; Deliyanni, E.A.; Chem. Eng. J. 236, 406–414, 2014.
[5] Mei, H.; Mei, B.W.; Yen, T.F.; Fuel 82, 405–414, 2003.
[6] Skof, E.R.; England, D.C.; Hydrocarb. Eng. 12, 5, 2007.
[7] Song, C.; Ma, X.; Appl. Catal. B. 41, 207-238, 2003.
[8] Huitema, E.M.; Schwietert, D.; Mandel, J.R.; Nagatsuka, S.; “Worldwide fuel charter: Gasoline and diesel fuel, 6th edition”, Worldwide Fuel Charter Committee, 2019.
[9] “Atmospheric distillation petroleum products - Test method”, ISIRI 6261, 2003.
[10] Li, F.; Liu, R.; Wen, J.; Zhao, D.; Sun, Z.; Liu, Y.; Green Chem. 11, 883–888, 2009.
[11] Kong, L.; Li, G.; Wang, X.; Wu, B.; Energy Fuels 20, 896−902, 2006.
[12] Mei, H.; Mei, B.W.; Yen, T.F.; Fuel 82, 405-414, 2003.
[13] Dai, Y.; Yutai, Q.; Fuel Process. Technol. 89, 927-932, 2008.
[14] Lü, H.; Ren, W.; Liao, W.; Chen, W.; Li, Y.; Suo, Z.; Appl. Catal. B 138-139, 79-83, 2013.
[15] Gatan, R.; Barger, P.; Gembicki, V.; Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem. 49, 577-579, 2004.
[16] Zhang, M.; Zhu, W.; Xun, S.; Li, H.; Gu, Q.; Zhao, Z.; Wang, Q.; Chem. Eng. J. 220, 328-336, 2013.
[17] Zhang, L.; Wang, J.; Sun, Y.; Jiang, B.; Yang, H.; Chem. Eng. J. 328, 445-453, 2017.
[18] Zhang, H,X,; Gao, J.J.; Meng, H.; Lu, Y.Z.; Li, C.X.; Ind. Eng. Chem. Res. 51, 4868-4874, 2012.
[19] Jia, Y.; Li, G.; Ning, G.; Fuel Process. Technol. 92, 106-111, 2011.
[20] Polikarpova, P.; Akopyan, A.; Shigapova, A.; Glotov, A.; Anisimov, A.; Karakhanov, E.; Energy Fuels 32, 10898−10903, 2018.
[21] Andevary, H.H.; Akbari, M.; Omidkhah, M.R.; Fuel Process. Technol. 185, 8−17, 2019.
[22] Trakarnpruk, W.; Rujiraworawut, K.; Fuel Process. Technol. 90, 411–414, 2009.
[23] Mirante, F.; Dias, L.; Silva, M.; Ribeiro, S.O.; Corvo, M.C.; de Castro, B.; Granadeiro, C.M.; Balula, S.S.; Catal Commun. 104, 1–8, 2018.
[24] Ribeiro, S.O.; Granadeiro, C.M.; Almeida, P.L.; Pires, J.; Capel-Sanchez, M.C.; Campos-Martin, J.M.; Gago, S.; Castro, B.; Balula, S.S.; Catal. Today 333, 226-236, 2019.
[25] Hossain, M.N.; Park, H.C.; Choi, H.S.; Catalysts 9, 229-241, 2019.
[26] Meyers, R.A.; “Handbook of Petroleum Refining Processes”, MC Graw-Hill, USA, 1996.
[27] Rezvani, M.A.; Asli, M.A.; Khandan, S.; Mousavi, H.; Aghbolagh, Z.S.; Chem. Eng. J. 312, 243-251, 2017.
[28] Sobati, M.A.; Dehkordi, A.M.; Shahrokhi, M.; Chem. Eng. Technol. 33, 1515–1524, 2010
[29] Deltcheff, C.L.; Fournier, M.; Franck, R.; Thouvenot, R.; Inorg. Chem. 22, 207–216, 1983.
[30] Silva, M.J.; Santos, L.F.; J. Appl. Chem. 147945, 1-7, 2013.
[31] Mokhtari, B.; Akbari, A.; Omidkhah, M.; Energy Fuels 33, 7276-7286, 2019.
[32] Zhu, W.; Wu, P.; Yang, L.; Chang, Y.; Chao, Y.; Li, H.; Jiang, Y.; Jiang, W.; Xun, S.; Chem. Eng. J. 229, 250−256, 2013.
[33] García-Gutiérrez, J.L.; Fuentes, G.A.; Hernández-Terán, M.E.; García, P.; Murrieta-Guevara, F.; Jiménez-Cruz, F.; Appl. Catal. A 334, 366−373, 2008.
[34] Liu, Y.Y.; Leus, K.; Sun, Z.; Li, X.; Depauw, H.; Wang, A.; Zhang, J.; Van Der Voort, P. Micropore Mesoporous Mater. 277, 245−252, 2019,
[35] Teimouri, A.; Mahmoudsalehi, M.; Salavati, H.; Int. J. Hydrogen Energy 43, 14816-14833, 2018.
_||_[1] Lei, W.; Wenya, W.; Mominou, N.; Liu, L.; Li, S.; Appl. Catal. B 193, 180–188, 2016.
[2] Campos-Martin, J.M.; Capel-Sanchez, M.C.; Fierro, J.L.G.; Green Chem. 6, 557–562, 2004.
[3] Mondal, S.; Hangun-Balkir, Y.; Alexandrova, L.; Link, D.; Howard, B.; Zandhuis, P.; Catal. Today. 116, 554–561, 2016.
[4] Triantafyllidis, S.K.; Deliyanni, E.A.; Chem. Eng. J. 236, 406–414, 2014.
[5] Mei, H.; Mei, B.W.; Yen, T.F.; Fuel 82, 405–414, 2003.
[6] Skof, E.R.; England, D.C.; Hydrocarb. Eng. 12, 5, 2007.
[7] Song, C.; Ma, X.; Appl. Catal. B. 41, 207-238, 2003.
[8] Huitema, E.M.; Schwietert, D.; Mandel, J.R.; Nagatsuka, S.; “Worldwide fuel charter: Gasoline and diesel fuel, 6th edition”, Worldwide Fuel Charter Committee, 2019.
[9] “Atmospheric distillation petroleum products - Test method”, ISIRI 6261, 2003.
[10] Li, F.; Liu, R.; Wen, J.; Zhao, D.; Sun, Z.; Liu, Y.; Green Chem. 11, 883–888, 2009.
[11] Kong, L.; Li, G.; Wang, X.; Wu, B.; Energy Fuels 20, 896−902, 2006.
[12] Mei, H.; Mei, B.W.; Yen, T.F.; Fuel 82, 405-414, 2003.
[13] Dai, Y.; Yutai, Q.; Fuel Process. Technol. 89, 927-932, 2008.
[14] Lü, H.; Ren, W.; Liao, W.; Chen, W.; Li, Y.; Suo, Z.; Appl. Catal. B 138-139, 79-83, 2013.
[15] Gatan, R.; Barger, P.; Gembicki, V.; Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem. 49, 577-579, 2004.
[16] Zhang, M.; Zhu, W.; Xun, S.; Li, H.; Gu, Q.; Zhao, Z.; Wang, Q.; Chem. Eng. J. 220, 328-336, 2013.
[17] Zhang, L.; Wang, J.; Sun, Y.; Jiang, B.; Yang, H.; Chem. Eng. J. 328, 445-453, 2017.
[18] Zhang, H,X,; Gao, J.J.; Meng, H.; Lu, Y.Z.; Li, C.X.; Ind. Eng. Chem. Res. 51, 4868-4874, 2012.
[19] Jia, Y.; Li, G.; Ning, G.; Fuel Process. Technol. 92, 106-111, 2011.
[20] Polikarpova, P.; Akopyan, A.; Shigapova, A.; Glotov, A.; Anisimov, A.; Karakhanov, E.; Energy Fuels 32, 10898−10903, 2018.
[21] Andevary, H.H.; Akbari, M.; Omidkhah, M.R.; Fuel Process. Technol. 185, 8−17, 2019.
[22] Trakarnpruk, W.; Rujiraworawut, K.; Fuel Process. Technol. 90, 411–414, 2009.
[23] Mirante, F.; Dias, L.; Silva, M.; Ribeiro, S.O.; Corvo, M.C.; de Castro, B.; Granadeiro, C.M.; Balula, S.S.; Catal Commun. 104, 1–8, 2018.
[24] Ribeiro, S.O.; Granadeiro, C.M.; Almeida, P.L.; Pires, J.; Capel-Sanchez, M.C.; Campos-Martin, J.M.; Gago, S.; Castro, B.; Balula, S.S.; Catal. Today 333, 226-236, 2019.
[25] Hossain, M.N.; Park, H.C.; Choi, H.S.; Catalysts 9, 229-241, 2019.
[26] Meyers, R.A.; “Handbook of Petroleum Refining Processes”, MC Graw-Hill, USA, 1996.
[27] Rezvani, M.A.; Asli, M.A.; Khandan, S.; Mousavi, H.; Aghbolagh, Z.S.; Chem. Eng. J. 312, 243-251, 2017.
[28] Sobati, M.A.; Dehkordi, A.M.; Shahrokhi, M.; Chem. Eng. Technol. 33, 1515–1524, 2010
[29] Deltcheff, C.L.; Fournier, M.; Franck, R.; Thouvenot, R.; Inorg. Chem. 22, 207–216, 1983.
[30] Silva, M.J.; Santos, L.F.; J. Appl. Chem. 147945, 1-7, 2013.
[31] Mokhtari, B.; Akbari, A.; Omidkhah, M.; Energy Fuels 33, 7276-7286, 2019.
[32] Zhu, W.; Wu, P.; Yang, L.; Chang, Y.; Chao, Y.; Li, H.; Jiang, Y.; Jiang, W.; Xun, S.; Chem. Eng. J. 229, 250−256, 2013.
[33] García-Gutiérrez, J.L.; Fuentes, G.A.; Hernández-Terán, M.E.; García, P.; Murrieta-Guevara, F.; Jiménez-Cruz, F.; Appl. Catal. A 334, 366−373, 2008.
[34] Liu, Y.Y.; Leus, K.; Sun, Z.; Li, X.; Depauw, H.; Wang, A.; Zhang, J.; Van Der Voort, P. Micropore Mesoporous Mater. 277, 245−252, 2019,
[35] Teimouri, A.; Mahmoudsalehi, M.; Salavati, H.; Int. J. Hydrogen Energy 43, 14816-14833, 2018.