تولید کاتالیست زئولیتی ZSM-5 و ارزیابی آن در واکنش ترانس آلکیل دارشدن تولوئن با آروماتیک C9
محورهای موضوعی : مهندسی شیمیسیامک شهنی 1 , سید مصطفی طباطبایی قمشه 2 *
1 - دانشجوی دکترای گروه مهندسی شیمی، واحد ماهشهر، دانشگاه آزاد اسلامی، ماهشهر، ایران.
2 - استادیار گروه مهندسی شیمی، واحد ماهشهر، دانشگاه آزاد اسلامی، ماهشهر، ایران.
کلید واژه: ترانس آلکیل دارشدن, زئولیت, آب گرمایی, واکنشگاه, کاتالیست.,
چکیده مقاله :
در این مطالعه کاتالیست زئولیتی ZSM-5 با روش آب گرمایی تهیه و ویژگی های آن با نمونه صنعتی مقایسه شد. نمونه تهیه شده گروه های ZSM-5 داشت و اندازه بلور ها درمقایسه با نمونه صنعتی کوچک تر بود. فعالیت کاتالیست تهیه شده در واکنش ترانس آلکیل دارشدن تولوئن با آروماتیک C9، بررسی شد. درصد تبدیل خوراک به بنزن و زایلن در حضور این کاتالیست با افزایش دما افزایش یافت، درحالی که گزینش پذیری دچار کاهش شد. افزایش WHSV موجب افزایش گزینش پذیری و کاهش درصد تبدیل شد. با توجه به نتیجه های به دست آمده از بررسی فعالیت کاتالیستی نمونه های صنعتی و تهیه شده با بهره گیری از طراحی آزمایش با روش سطح پاسخ (RSM)، برای کاتالیست صنعتی در دمای 437 درجه سلسیوس وWHSV برابر با 3/1، بیشترین درصد گزینش پذیری 65، درحالی که در همان دما و WHSV، برای کاتالیست تهیه شده، بیشترین درصد گزینش پذیری 77 به دست آمد. این نتیجه نشان داد که گزینش پذیری کاتالیست تهیه شده نسبت کاتالیست صنعتی، حدود 18 درصد بهبود یافته بود.
In this study, ZSM-5 zeolite catalyst was prepared by hydrothermal method and compared with commercial catalyst. The crystal size of the prepared catalyst was smaller than that of commercial sample. Catalytic behaviour of the prepared catalyst was investigated in transalkylation reaction of toluene with C9 aromatics. The percentage of conversion to benzene and xylene increased with increasing temperature, while the selectivity decreased. Increasing WHSV led to increasing the selectivity and decreasing the conversion. According to the results obtained from catalytic activity study of the catalysts using response surface methodology (RSM), the maximum selectivity of the commercial catalyst was 65 % at 437 °C and WHSV equal to 1.3 h-1, while the maximum selectivity of the prepared catalyst was 77 % at the same conditions. This result indicated that at the aforementioned conditions the selectivity of the prepared catalyst was around 18 % more than that of commercial catalyst.
[1] Chen X, Yan W, Shen W, Yu J, Cao X, Xu R. Morphology control of self-stacked silicalite-1 crystals using microwave-assisted solvothermal synthesis. Microporous Mesoporous Mater. 2007;104(1):296–304. doi :org/10.1016/j.micromeso.2007.05.015
[2] Inagaki S, Shinoda S, Kaneko Y, Takechi K, Komatsu R, Tsuboi Y, et al. Facile fabrication of ZSM-5 zeolite catalyst with high durability to coke formation during catalytic cracking of paraffins. ACS Catal. 2013;3(1):74–8. doi: org/10.1021/cs300426k
[3] Ji Y, Yang H, Yan W. Strategies to enhance the catalytic performance of ZSM-5 zeolite in hydrocarbon cracking: A review. Catalysts. 2017;7(12):637. doi: org/10.3390/catal7120367
[4] Li Z, Jiang X, Xiong G, Nie B, Liu C, He N, et al. Towards the preparation of binderless ZSM-5 zeolite catalysts: The crucial role of silanol nests. Catal Sci Technol. 2020;10(23):7829–41. doi: org/10.1039/D0CY01289K
[5] Serra JM, Guillon E, Corma A. A rational design of alkyl-aromatics dealkylation–transalkylation catalysts using C8 and C9 alkyl-aromatics as reactants. J Catal. 2004;227(2):459–69. doi: org/10.1016/j.jcat.2004.08.006
[6] Ivashkina E, Khlebnikova E, Dolganova I, Dolganov I, Khroyan LA. Mathematical modeling of liquid-phase alkylation of benzene with ethylene considering the process unsteadiness. Ind Eng Chem Res. 2020;59(32):14537–43. doi: org/10.1021/acs.iecr.0c02660
[7] Alotaibi A, Bayahia H, Kozhevnikova EF, Kozhevnikov I V. Selective alkylation of benzene with propane over bifunctional Pt-heteropoly acid catalyst. ACS Catal. 2015;5(9):5512–8. doi: org/10.1021/acscatal.5b01102
[8] Caeiro G, Carvalho RH, Wang X, Lemos MANDA, Lemos F, Guisnet M, et al. Activation of C2–C4 alkanes over acid and bifunctional zeolite catalysts. J Mol Catal A Chem. 2006;255(1):131–58. doi: org/10.1016/j.molcata.2006.03.068
[9] Corma A, Llopis FJ, Martínez C, Sastre G, Valencia S. The benefit of multipore zeolites: Catalytic behaviour of zeolites with intersecting channels of different sizes for alkylation reactions. J Catal. 2009;268(1):9–17. doi: org/10.1016/j.jcat.2009.08.012
[10] Khlebnikova E, Ivashkina E, Dolganova I. Benzene alkylation with ethylene: The way to increase the process efficiency. Chem Eng Process - Process Intensif. 2017;120:234–40. doi: 10.1016/j.cep.2017.07.002
[11] Liu K, Xie S, Liu S, Xu G, Gao N, Xu L. Catalytic role of different pore systems in MCM-49 zeolite for liquid alkylation of benzene with ethylene. J Catal. 2011;283(1):68–74. doi: org/10.1016/j.jcat.2011.07.004
[12] Liu K, Xie S, Xu G, Li Y, Liu S, Xu L. Effects of NaOH solution treatment on the catalytic performances of MCM-49 in liquid alkylation of benzene with ethylene. Appl Catal A Gen. 2010;383(1):102–11. doi: org/10.1016/j.apcata.2010.05.029
[13] Zhu Z, Chen Q, Zhu W, Kong D, Li C. Catalytic performance of MCM-22 zeolite for alkylation of toluene with methanol. Catal Today. 2004;93–95:321–5. doi: org/10.1016/j.cattod.2004.06.008
[14] Al-Kinany MC, Al-Megren HA, Al-Ghilan EA, Edwards PP, Xiao T, Al-Shammari AS, et al. Selective zeolite catalyst for alkylation of benzene with ethylene to produce ethylbenzene. Appl Petrochemical Res. 2012 Nov 2;2(3–4):73–83. doi: org/10.1007/s13203-012-0022-6
[15] Soltanali S, Halladj R, Rashidi A, Bazmi M. Application of D-optimal experimental design in nano-sized ZSM-5 synthesis for obtaining higher crystallinity. Cryst Res Technol. 2014;49(6):366–75. doi: org/10.1002/crat.201300434
[16] Hu H, Zhang Q, Cen J, Li X. High suppression of the formation of ethylbenzene in benzene alkylation with methanol over ZSM-5 catalyst modified by platinum. Catal Commun. 2014;57:129–33. doi: org/10.1016/j.catcom.2014.08.017
[17] Franck H-G, Stadelhofer JW. Industrial aromatic chemistry: Raw materials· processes· products. Germany: Springer Science & Business Media; 2012.
[18] Chen S, Zhang N, Narváez Villarrubia CW, Huang X, Xie L, Wang X, et al. Single Fe atoms anchored by short-range ordered nanographene boost oxygen reduction reaction in acidic media. Nano Energy. 2019;66:104164. doi: org/10.1016/j.nanoen.2019.104164
[19] Koshkin SA, Ignatova LA, Ivashkina EN, Dolganova IO. Modeling of transalkylation stage of ethylbenzene manufacturing with zeolite-catalysts. Procedia Eng. 2016;152:45–50. doi:org/10.1016/j.proeng.2016.07.622
[20] Meshram NR, Hegde SG, Kulkarni SB, Ratnasamy P. Disproportionation of toluene over HZSM-5 zeolites. Appl Catal. 1983;8(3):359–67. doi: org/10.1016/0166-9834(83)85006-4
[21] Ali MA, Ali SA, Al-Nawad K. Disproportionation of Toluene: Enhanced Para-Xylene Selectivity Over Modified HZSM-5. Curr Catal. 2013;2(2):96–110. doi: 10.2174/2211544711302020003
[22] Odedairo T, Balasamy RJ, Al-Khattaf S. Toluene disproportionation and methylation over Zeolites TNU-9, SSZ-33, ZSM-5, and mordenite using different reactor systems. Ind Eng Chem Res. 2011;50(6):3169–83. doi: org/10.1021/ie1018904
[23] Tsuji E, Katada N. Frontiers in arene chemistry: Direct methylation of benzene with methane on metal‐loaded zeolites. In: Mortier J. Editor. Industrial arene chemistry: Markets, technologies, sustainable processes and cases studies of aromatic commodities. USA: Wiley; 2023. p. 747–67. doi/10.1002/9783527827992.ch26
[24] Wen Z, Cao F, Liu J-B, Xue B. Shape-selective alkylation of toluene with dimethyl carbonate into p-Xylene over MgO/MCM-22 prepared by a novel pre-impregnation method. Catal Letters. 2024;154(1):170–80. doi: org/10.1007/s10562-023-04289-z
[25] Sharanappa N, Pai S, Bokade V. Selective alkylation and disproportionation of ethylbenzene in the presence of other aromatics. J Mol Catal A Chem. 2004;217(1–2):185–91. doi: org/10.1016/j.molcata.2004.03.031
[26] Chen W-H, Ko H-H, Sakthivel A, Huang S-J, Liu S-H, Lo A-Y, et al. A solid-state NMR, FT-IR and TPD study on acid properties of sulfated and metal-promoted zirconia: Influence of promoter and sulfation treatment. Catal Today. 2006;116(2):111–20. doi: org/10.1016/j.cattod.2006.01.025