بررسی تغییرات نقشه الگوهای جریان استخراج حلالی دیکلوفناک سدیم در سیستمهای میکروفلوئیدیک براساس اعداد بدون بعد
محورهای موضوعی : مهندسی شیمیمهوش انصاری مهر 1 , احمد رهبر کلیشمی 2 , هادی شایسته 3
1 - کارشناس ارشد مهندسی شیمی، فرایندهای جداسازی و فراوری مواد، دانشکده مهندسی شیمی نفت و گاز، دانشگاه علم و صنعت ایران، تهران، ایران
2 - دانشیار مهندسی شیمی، ، فرایندهای جداسازی و فراوری مواد، دانشکده مهندسی شیمی نفت و گاز، دانشگاه علم و صنعت ایران، تهران، ایران
3 - دانشجوی دکتری مهندسی شیمی ، فرایندهای جداسازی و فراوری مواد، دانشکده مهندسی شیمی نفت و گاز، دانشگاه علم و صنعت ایران، تهران، ایران
کلید واژه: وبر, ریزسیالشی, استخراج مایعمایع, الگوهای جریان, رینولدز, مویینگی,
چکیده مقاله :
در این پژوهش، استخراج حلالی دیکلوفناک از محیط آبی با استفاده از استخراجکننده تترا-ان-بوتیل آمونیم بروماید (TBAB) در میکروکانال Y شکل با تاکید بر الگوهای جریان دوفازی مورد مطالعه تجربی قرار گرفت. برای بررسی رقابت بین نیروهای تاثیرگذار بر الگوهای جریان از اعداد بدون بعد مویینگی، وبر و رینولدز استفاده شده است. مشاهده شد که در اعداد مویینگی و وبر پایین جریان لختهای تشکیل می شود که نشان میدهد در سرعتهای کم دو فاز، کشش سطحی نیروی تاثیرگذار بر جریان دو فاز است و ازآنجایی که نیروی کشش سطحی بهطورعمود بر سطح عمل میکند، جریان لختهای ایجاد شده است. با افزایش دبی کل از 1/2 تا ml/h 2 که در گسترده جریان لختهای قرار دارد بازده استخراج از 93 درصد به 90/4 % کاهش یافت. با افزایش دبی کل از 4 تا ml/h 12 جریان لختهای به موازی تبدیل شد و بازده استخراج از 64/2 % به 45/2 % کاهش پیدا کرد. با بررسی عملکرد انتقال جرمی میکروکانال میتوان گفت در جریان لختهای هرچه دبی کل بیشتر میشود (از 1/2 تا ml/h 2) چرخشهای داخلی زیادتر می شود و در نتیجه مقدار ضریب انتقال جرم از 0/131 به s/1 0/191 افزایش مییابد. در جریان موازی نیز با افزایش دبی از 4 به ml/h 12 به علت کاهش زمان اقامت و افزایش نیرو محرکه غلظت، ضریب انتقال جرم از 0/241 به s/1 0/283 افزایش مییابد.
In the present study, the diclofenac (DF) solvent extraction from aqueous solution using tetra-n-butyl ammonium bromide (TBAB) in Y-type microfluidic junctions with liquid−liquid two-phase flow patterns was studied. Reynolds, Weber, and Capillary dimensionless numbers have been used to investigate the competition between forces affecting the flow patterns. In low capillary and Weber numbers, a slug flow is formed, which indicates that at low velocities of two-phase tension is the force affecting the two-phase flow. With increasing the total flow rate from 1.2 mL/h to 2 mL/h, which is in the range of slug flow, the extraction efficiency decreased from 93% to 90.4%. With increasing the total flow rate from 4 mL/h to 12 mL/h, the slug flow became parallel, and the extraction efficiency decreased from 64.2% to 45.2%. By examining the mass transfer function of microchannels, it can be said that the higher the total flow rate (from 1.2 to 2 mL/h), the more the internal rotations increase, and as a result, the mass transfer coefficient increases from 0.131 1/s to 0.191 1/s. In parallel flow, with an increasing flow rate from 4 mL/h to 12 mL/h due to decreasing residence time and increasing the driving force of concentration, the mass transfer coefficient increases from 0.241 1/s to 0.283 1/s.
[1] Mohammadi, Z.; Kelishami, A.R.; Ashrafi, A.; Water Science and Technology 83, 1265-1277, 2021.
[2] Prasetya, N.; Li, K.; Chemical Engineering Journal 417, 129216, 2021.
[3] Smirnova, S.V.; Lyskovtseva, K.A.; Pletnev, I.V.; Microchemical Journal 162, 105833, 2021.
[4] Bokhary, A.; Leitch, M.; Liao, B.Q.; Journal of Water Process Engineering 40, 101762, 2021.
[5] El Maangar, A.; Theisen, J.; Penisson, C.; Zemb, T.; Gabriel, J.C.P.; Physical Chemistry Chemical Physics. 22, 5449–5462, 2020.
[6] Klemz, A.C.; Weschenfelder, S.E.; Lima de Carvalho Neto, S.; Pascoal Damas, M.S.; Toledo Viviani, J.C.; Mazur, L.P.; Marinho, B.A.; dos S. Pereira, L.; da Silva, A.; Borges Valle, J.A.; de Souza, A.A.U.; Guelli U. de Souza, S.M.A.; Journal of Petroleum Science and Engineering 199, 108282, 2021.
[7] Jing, X.; Huang, X.; Wang, H.; Xue, H.; Wu, B.; Wang, X.; Jia, L.; Food Chemistry 348, 129147, 2021.
[8] Tuzen, M.; Elik, A.; Altunay, N.; Journal of Molecular Liquids 329, 115556, 2021.
[9] Benz, K.; Jäckel, K.P.; Regenauer, K.J.; Schiewe, J.; Drese, K.; Ehrfeld, W.; Hessel, V.; Löwe, H.; Chemical Engineering and Technology. 24, 11–17, 2001.
[10] Tian, W.C.; Finehout, E.; “Microfluidics for Biological Applications”, Springer Science & Business Media, Boston, 2009.
[11] Santos, H.A.; Liu, D.; Zhang, H.; “Microfluidics for Pharmaceutical Applications: From Nano/Micro Systems Fabrication to Controlled Drug Delivery”, Elsevier Inc., 2019.
[12] Maurice, A.; Theisen, J.; Gabriel, J.C.P.; Current Opinion in Colloid and Interface Science. 46, 20–35, 2020.
[13] Qian, J.-Y.; Li, X.-J.; Wu, Z.; Jin, Z.-J.; Sunden, B.; Microfluidics and Nanofluidics 23, 116, 2019.
[14] Zhao, Y.; Chen, G.; Yuan, Q.; AIChE Journal 53, 3042–3053, 2007.
[15] Kashid, M.N. Renken.; A.; Kiwi-Minsker, L.; Chemical Engineering Science 66, 3876-3897, 2011.
[16] Dessimoz, A.L.; Cavin, L.; Renken, A.; Kiwi-Minsker, L.; 10th International Conference on Microreaction Technology IMRET 2008 - Topical Conference at the 2008 AIChE Spring National Meeting 63, 283–284, 2008.
[17] Zhao, Y.; Su, Y.; Chen, G.; Yuan, Q.; Chemical Engineering Science 65, 1563–1570, 2010.
[18] Darekar, M.; Singh, K.K.; Mukhopadhyay, S.; Shenoy, K.T.; Industrial & Engineering Chemistry Research. 56, 12215–12226, 2017.
[19] Zhang, Q.; Liu, H.; Zhao, S.; Yao, C.; Chen, G.; Chemical Engineering Journal 358, 794–805, 2019.
[20] Kim, H.B.; Ueno, K.; Chiba, M.; Kogi, O.; Kitamura, N.; Analytical Sciences 16, 871–876, 2000.
[21] Aota, A.; Mawatari, K.; Kitamori, T.; Lab on a Chip 9, 2470–2476, 2009.
[22] Yin, S.; Pei, J.; Peng, J.; Zhang, L.; Srinivasakannan, C.; Hydrometallurgy 175, 64–69, 2018.
[23] Shayesteh, H.; Nodehi, R.; Rahbar-Kelishami, A.; Surfaces and Interfaces 20, 100615, 2020.
[24] Seifollahi, Z.; Rahbar-Kelishami, A.; Journal of Molecular Liquids 231, 1–10, 2017.
[25] Gale, B.K.; Jafek, A.R.; Lambert, C.J.; Goenner, B.L.; Moghimifam, H.; Nze, U.C.; Kamarapu, S.K.; Inventions 3(3), 66, 2018.
[26] Ferraris, S.; Nommeots-Nomm, A.; Spriano, S.; Vernè, E.; Massera, J.; Applied Surface Science 475, 43–55, 2019.
[27] Tsaoulidis, D.; Angeli, P.; Chemical Engineering Journal 262, 785–793, 2015.
[28] Tsaoulidis, D.; Dore, V.; Angeli, P.; Plechkova, N.V.; Seddon, K.R.; Chemical Engineering Journal 227, 151–157, 2013.
[29] Woitalka, A.; Kuhn. S.; Jensen, K.F.; Chemical Engineering Science 116, 1–8, 2014.
[30] Passos, M.L.C.; Saraiva, M.; Journal of the International Measurement Confederation 135, 896–904, 2019.
[31] Sawant, D.K.; Ige, P.P.; Indian Journal of Pharmaceutical Education and Research 51, S754-S760, 2017.
[32] Xie, T.; Jing, S.; Xu, C.; Chemical Engineering Research and Design 128, 37–48, 2017.
[33] Wang, W.T.; Sang, F.N.; Xu, J.H.; Wang, Y.D.; Luo, G.S.; RSC Advances 5, 82056–82064, 2015.
[34] Song, H.; Bringer, M.R.; Tice, J.D.; Gerdts, C.J.; Ismagilov, R.F.; Applied Physics Letters 83, 4664–4666, 2003.
[35] Kashid, M.N.; Renken, A.; Kiwi-Minsker, L.; Industrial and Engineering Chemistry Research 50, 6906–6914, 2011.
[36] Sen, N.; Darekar, M.; Singh, K.K.; Mukhopadhyay, S.; Shenoy, K.T.; Ghosh, S.K.; Solvent Extraction and Ion Exchange 32, 281–300, 2014.
[37] Singh, K.K.; Renjith, A.U.; Shenoy, K.T.; Chemical Engineering and Processing - Process Intensification 98, 95–105, 2015.
[38] Xie, T.; Liu, X.; Xu, C.; Chen, J.; Chemical Engineering and Processing: Process Intensification 120, 9–19, 2017.
_||_[1] Mohammadi, Z.; Kelishami, A.R.; Ashrafi, A.; Water Science and Technology 83, 1265-1277, 2021.
[2] Prasetya, N.; Li, K.; Chemical Engineering Journal 417, 129216, 2021.
[3] Smirnova, S.V.; Lyskovtseva, K.A.; Pletnev, I.V.; Microchemical Journal 162, 105833, 2021.
[4] Bokhary, A.; Leitch, M.; Liao, B.Q.; Journal of Water Process Engineering 40, 101762, 2021.
[5] El Maangar, A.; Theisen, J.; Penisson, C.; Zemb, T.; Gabriel, J.C.P.; Physical Chemistry Chemical Physics. 22, 5449–5462, 2020.
[6] Klemz, A.C.; Weschenfelder, S.E.; Lima de Carvalho Neto, S.; Pascoal Damas, M.S.; Toledo Viviani, J.C.; Mazur, L.P.; Marinho, B.A.; dos S. Pereira, L.; da Silva, A.; Borges Valle, J.A.; de Souza, A.A.U.; Guelli U. de Souza, S.M.A.; Journal of Petroleum Science and Engineering 199, 108282, 2021.
[7] Jing, X.; Huang, X.; Wang, H.; Xue, H.; Wu, B.; Wang, X.; Jia, L.; Food Chemistry 348, 129147, 2021.
[8] Tuzen, M.; Elik, A.; Altunay, N.; Journal of Molecular Liquids 329, 115556, 2021.
[9] Benz, K.; Jäckel, K.P.; Regenauer, K.J.; Schiewe, J.; Drese, K.; Ehrfeld, W.; Hessel, V.; Löwe, H.; Chemical Engineering and Technology. 24, 11–17, 2001.
[10] Tian, W.C.; Finehout, E.; “Microfluidics for Biological Applications”, Springer Science & Business Media, Boston, 2009.
[11] Santos, H.A.; Liu, D.; Zhang, H.; “Microfluidics for Pharmaceutical Applications: From Nano/Micro Systems Fabrication to Controlled Drug Delivery”, Elsevier Inc., 2019.
[12] Maurice, A.; Theisen, J.; Gabriel, J.C.P.; Current Opinion in Colloid and Interface Science. 46, 20–35, 2020.
[13] Qian, J.-Y.; Li, X.-J.; Wu, Z.; Jin, Z.-J.; Sunden, B.; Microfluidics and Nanofluidics 23, 116, 2019.
[14] Zhao, Y.; Chen, G.; Yuan, Q.; AIChE Journal 53, 3042–3053, 2007.
[15] Kashid, M.N. Renken.; A.; Kiwi-Minsker, L.; Chemical Engineering Science 66, 3876-3897, 2011.
[16] Dessimoz, A.L.; Cavin, L.; Renken, A.; Kiwi-Minsker, L.; 10th International Conference on Microreaction Technology IMRET 2008 - Topical Conference at the 2008 AIChE Spring National Meeting 63, 283–284, 2008.
[17] Zhao, Y.; Su, Y.; Chen, G.; Yuan, Q.; Chemical Engineering Science 65, 1563–1570, 2010.
[18] Darekar, M.; Singh, K.K.; Mukhopadhyay, S.; Shenoy, K.T.; Industrial & Engineering Chemistry Research. 56, 12215–12226, 2017.
[19] Zhang, Q.; Liu, H.; Zhao, S.; Yao, C.; Chen, G.; Chemical Engineering Journal 358, 794–805, 2019.
[20] Kim, H.B.; Ueno, K.; Chiba, M.; Kogi, O.; Kitamura, N.; Analytical Sciences 16, 871–876, 2000.
[21] Aota, A.; Mawatari, K.; Kitamori, T.; Lab on a Chip 9, 2470–2476, 2009.
[22] Yin, S.; Pei, J.; Peng, J.; Zhang, L.; Srinivasakannan, C.; Hydrometallurgy 175, 64–69, 2018.
[23] Shayesteh, H.; Nodehi, R.; Rahbar-Kelishami, A.; Surfaces and Interfaces 20, 100615, 2020.
[24] Seifollahi, Z.; Rahbar-Kelishami, A.; Journal of Molecular Liquids 231, 1–10, 2017.
[25] Gale, B.K.; Jafek, A.R.; Lambert, C.J.; Goenner, B.L.; Moghimifam, H.; Nze, U.C.; Kamarapu, S.K.; Inventions 3(3), 66, 2018.
[26] Ferraris, S.; Nommeots-Nomm, A.; Spriano, S.; Vernè, E.; Massera, J.; Applied Surface Science 475, 43–55, 2019.
[27] Tsaoulidis, D.; Angeli, P.; Chemical Engineering Journal 262, 785–793, 2015.
[28] Tsaoulidis, D.; Dore, V.; Angeli, P.; Plechkova, N.V.; Seddon, K.R.; Chemical Engineering Journal 227, 151–157, 2013.
[29] Woitalka, A.; Kuhn. S.; Jensen, K.F.; Chemical Engineering Science 116, 1–8, 2014.
[30] Passos, M.L.C.; Saraiva, M.; Journal of the International Measurement Confederation 135, 896–904, 2019.
[31] Sawant, D.K.; Ige, P.P.; Indian Journal of Pharmaceutical Education and Research 51, S754-S760, 2017.
[32] Xie, T.; Jing, S.; Xu, C.; Chemical Engineering Research and Design 128, 37–48, 2017.
[33] Wang, W.T.; Sang, F.N.; Xu, J.H.; Wang, Y.D.; Luo, G.S.; RSC Advances 5, 82056–82064, 2015.
[34] Song, H.; Bringer, M.R.; Tice, J.D.; Gerdts, C.J.; Ismagilov, R.F.; Applied Physics Letters 83, 4664–4666, 2003.
[35] Kashid, M.N.; Renken, A.; Kiwi-Minsker, L.; Industrial and Engineering Chemistry Research 50, 6906–6914, 2011.
[36] Sen, N.; Darekar, M.; Singh, K.K.; Mukhopadhyay, S.; Shenoy, K.T.; Ghosh, S.K.; Solvent Extraction and Ion Exchange 32, 281–300, 2014.
[37] Singh, K.K.; Renjith, A.U.; Shenoy, K.T.; Chemical Engineering and Processing - Process Intensification 98, 95–105, 2015.
[38] Xie, T.; Liu, X.; Xu, C.; Chen, J.; Chemical Engineering and Processing: Process Intensification 120, 9–19, 2017.