Optimization of Process Parameters on Hydrothermal Liquefaction of Sambucus Ebulus for Bio-oil Production
Subject Areas : PolymerAmir Hosein Mohseni 1 , Hadi Baseri 2
1 - School of Chemistry, Damghan University, Damghan, Iran
2 - School of Chemistry, Damghan University, Damghan, Iran
Keywords:
Abstract :
Nowadays, the production of bio-oil and chemical intermediates from renewable energy sources isvery important because of growing concerns about climate and environmental changes. In thiswork, the thermal liquefaction of Sambucus ebulus (Danewort plant) is studied with a focus on theyield and composition of the produced bio-oil. The produced bio-oil was characterized by FTIR,GC, and GC-MS analyses, and more than 35 different chemical components were identified in it.About 60 w% of the produced bio-oil is composed of five chemical components of acetic acid(21.29%), pentanoic acid (19%), acetone (10.64%), neophytadiene (5%), and α-pinene (4.4%). Theeffects of various process parameters of reaction temperature, time, and concentration of solutionmedia on the yield and composition of products were studied. The maximum yield of the producedbio-oil is about 42% in a temperature of 160°C, a reaction time of 2 h, and 0.75 V% of ethyl acetatein the solution media.
[1]. G. Kabir, B.H. Hameed, Renew. Sust. Energ. Rev., 70, 945 (2017).
[2]. H.A. Baloch, M.T.H. Siddiqui, S. Nizamuddin, N.M. Mubarak, M. Khalid, M.P. Srinivasan,
G.J. Griffin, J. Anal. Appl. Pyrolysis, 153, 104944 (2021).
[3]. S. Aflaki, P. Hajikarimi, E.H. Fini, B. Zada, J. Mater. Civ. Eng., 26(3), 429 (2014).
[4]. M. Chen, B. Leng, S. Wu, Y. Sang, Constr. Build. Mater., 66, 286 (2014).
[5]. B. Khoshnevisan, N. Duan, P. Tsapekos, M.K. Awasthi, Z. Liu, A. Mohammadi, I. Angelidaki,
D.C.W. Tsang, , Z. Zhang, J. Pan, L. Ma, M. Aghbashlo, M. Tabatabaei, H. Liu, Renew. Sust.
Energ. Rev., 135, 110033 (2021).
[6]. S. Biswas, D.K. Sharma, Int. J. Green Energy, 793, 811 (2021).
[7]. G. Xiujuan, W. Shurong, W. Qi, G. Zuogang, L. Zhongyang, Chin. J. Chem. Eng., 19(1), 116
(2011).
[8]. B.E.-O. Eboibi, D.M. Lewis, P.J. Ashman, S. Chinnasamy, Bioresour. Technol., 174, 212
(2014).
[9]. U. Jena, K.C. Das, Energy Fuels, 25, 5472 (2011).
[10]. A. Aierzhati, J. Watson, B. Si, M. Stablein, T. Wang, Y. Zhang, Energy Convers. Manag., 10,
100076 (2021).
[11]. H.J. Huang, X.Z. Yuan, Prog. Energy Combust. Sci., 49, 59 (2015).
[12]. P.S. Rajan, K.P. Gopinath, J. Arun, K.G. Pavithra, A.A. Joseph, S. Manasa, Renew. Sust.
Energ. Rev., 144, 111019 (2021).
[13]. D. C. Elliott, P. Biller, A.B. Ross, A.J. Schmidt, S.B. Jones, Bioresour. Technol., 178, 147
(2015).
[14]. Z. Bi, J. Zhang, E. Peterson, Z. Zhu, C. Xia, Y. Liang, T.J.F. Wiltowski, Fuel, 188 (429), 112
(2017).
[15]. R. Posmanik, D. Cantero, A. Malkani, D. Sills, J.J.T.J.o.S.F. Tester, J. Supercrit. Fluids, 119,
26 (2017).
[16]. Z. Zhu, L. Rosendahl, S.S. Toor, D. Yu, G.J.A.E. Chen, Appl. Energy, 137, 183 (2015).
[17]. S. Cheng, I.D’. cruz, M. Wang, M. Leitch, C. Xu, Energy Fuels, 24, 4659 (2010).
[18]. S. Cheng, Electronic Theses and Dissertations., 1223 (2017).
[19]. Q. Li, D. Liu, L. Song, P. Wu, Z.J.E. Yan, Fuels, 28(11), 6928 (2014).
[20]. M. Jabbari, B. Daneshfard, M. Emtiazy, A. Khiveh, M.H. Hashempur, J. Evid.-Based Integr.
Med., 22(4), 996 (2017).
[21]. Z. Gao, N. Li, S.Yin, W. Yi, Energy, 175, 1067 (2019).
[22]. B. Zhang, H. Feng, Z. He, S. Wang, H. Chen, Energy Convers. Manag., 159, 204 (2018).
[23]. R. Singh, T. Bhaskar, B. Balagurumurthy, Process Saf. Environ. Prot., 93, 154 (2015).
[24]. Z. Shuping, W. Yulong, Y. Mingde, I. Kaleem, L. Chun, J. Tong, Energy, 35(12), 5406
(2010).
[25]. M.H. Eikani, F. Golmohammad, H.S. Amoli, Z.B. Sadr, Sep. Sci. Technol., 48(8), 1194 (2013).
[26]. S. Thiruvenkadam, S. Izhar, H. Yoshida, M. K. Danquah, R. Harun, Appl. Energy, 154, 815
(2015).
[27]. D. Zhou, L. Zhang, S. Zhang, H. Fu, J. Chen, Energy Fuels, 24(7), 4054 (2010).
[28]. Z. Wang, L. Li, R. Hu, X. Wang, C. Pan, S. Kang, S. Ren, Z. Lei, H. Shui, Fuel Process.
Technol., 176, 167 (2018).
[29]. R. Divyabharathia, P. Subramanian, Mater. Today: Proc., 45,603 (2020).
[30]. Y. Ding, B. Shan, X. Cao, Y. Liu, M. Huang, B. Tang, J. Clean. Prod.: (2020) 125586.
[31]. E. R. Abide, S. R. Mortari, G. Ugalde, A. Valerio, S.M. Amorim, M.D. Luccio, R de F.P.M.
Moreira, R.C. Kuhn, W.L. Priamo, M.V. Tres, G.L. Zabot, M.A. Mazutti, J. Clean. Prod., 209, 386
(2019).
[32]. N. Akiya, P.E. Savage, Chem. Rev., 102 (8), 2725 (2002).
[33]. A.R.R. Pinto, F. Antas, R.C.D. Santos, S. Bowra, P. Simoes, S. Barreiros, A. Paiva, J. Anal.
Appl. Pyrol., 127, 68 (2017).
[34]. B. Jin, P. Duan, C. Zhang, Y. Xu, L. Zhang, F. Wang, Chem. Eng. J., 254, 384 (2014).
[35]. T.H. Pedersen, L. Jasiūnas, L. Casamassima, S. Singh, T. Jensen, L.A. Rosendahl, Energy
Convers. Manag., 106, 886 (2015).
[36]. T. Aysu, H. Durak, Biofuel, Bioprod. Biorefin., 9, 231 (2015).
[37]. T.H. Pedersen, I.F. Grigoras, J. Hoffmann, S.S. Toor, I.M. Daraban, C.U. Jensen, S.B. Iversen,
R.B. Madsen, M. Glasius, K.R. Arturi, Appl. Energy, 162, 1034 (2016).
[38]. J.L. Wagner, J. Perin, R.S. Coelho, V.P. Ting, C.J. Chuck, T. Teixeira Franco, Waste Biomass
Valorization, 9, 1867 (2018).
[39]. M. P. Caporgno, J. Pruvost, J. Legrand, O. Lepine, M. Tazerout, C. Bengoa, Bioresour.
Technol., 214, 404 (2016).
[40]. Y. Chen, Y. Wu, P. Zhang, D. Hua, M. Yang, C. Li, Z. Chen, J. Liu, Bioresour. Technol., 124,
190 (2012).
[41]. H. Feng, B. Zhang, Z. He, S. Wang, O. Salih, Q. Wang, Energy, 155, 1093 (2018).
[42]. Y. Han, K. Hoekman, U. Jena, P. Das, Energies, 13, 124 (2020).