Electrochemical Determination of Dopamine Based on Magnetic Molecularly Imprinted Nanocomposite and Ionic Liquid Functionalized Carbon Paste Electrode in the Biological Samples
Subject Areas : PolymerFarzaneh Shaker 1 , Mohammad Taghi Vardini 2 , Moosa Es’haghi 3 , Ebrahim GhorbaniKalhor 4
1 - Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
2 - Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
3 - Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
4 - Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
Keywords:
Abstract :
Dopamine (DA) is a well-known neurotransmitter in the brain that is related to mental and motivational states. So, its measurement is essential. A sensitive electrochemical molecularly imprinted sensor-based newnanocomposite was developed for the detection of DA. The structural basis of nanocomposite was composed of molecularly imprinted polymer (MIP) polymerization of methacrylic acid (MAA) in the presence of DA as a template molecule. The MIP was decorated with Fe3O4 particles, ionic liquid (IL), and gold nanoparticles (AuNPs). MIP modified nanocomposite was used as the main component of the carbon paste electrode (CPE). The morphology of the designed nanocomposite was studied by scanning electron microscope (SEM), and Fourier transforms infrared spectroscopy (FT-IR) techniques. The performance of the developed sensor was investigated by cyclic voltammetry (CV), and differential pulse voltammetry (DPV) techniques for the detection of DA. The MIP sensor exhibits a broad linear range, between 6×10-8 to 1×10-5 M and a limit of detection of 1×10-10 M (S/N=3). Furthermore, the modified MIP sensor was successfully employed to test DA in urine and blood samples.
[1]. C.F. Valenzuela, M.P. Puglia, S. Zucca, Alcohol Res Health, 34, 106 (2011).
[2]. A. Schatton, J. Agoro, J. Mardink, G. Leboulle, C. Scharff, BMC Neuroscience, 19, 69
(2018).
[3]. E. Casal, L. Palomo, D. Cabrera, J.M. Falcon-Perez, Front Pharmacol, 7, 501 (2016).
[4]. J. Chen, Y.-P. Shi, J.-Y. Liu, J. Chromatogr. A, 1003, 127 (2003).
[5]. S. Karayaka, D.S. Chormey, M. Fırat, S. Bakırdere, Chemosphere, 235, 205 (2019).
[6]. S.M. Banihashemian, V. Periasamy, G. Boon Tong, S. Abdul Rahman, PLoS One, 11,
e0149488 (2016).
[7]. M. Gholivand, M. Torkashvand, Mater. Sci. Eng. C, 59, 594 (2016).
[8]. S. Akbari, S. Jahani, M.M. Foroughi, H.H. Nadiki, J. Appl. Chem. Res., 14, 8 (2021).
[9]. M.A. Abu-Dalo, N.S. Nassory, N.I. Abdulla, I.R. Al-Mheidat, J. Electroanal. Chem., 751,
75 (2015).
[10]. A. Poma, A.P. Turner, S.A. Piletsky, Trends Biotechnol., 28, 629 (2010).
[11]. K. Hemmati, A. Masoumi, M. Ghaemy, Carbohydr. Polym., 136, 630 (2016).
[12]. G. Yang, F. Zhao, Electrochim. Acta, 174, 33 (2015).
[13]. J. Li, X. Lin, Sens. Actuators B Chem., 126, 527 (2007).
[14]. X. Tan, Q. Hu, J. Wu, X. Li, P. Li, H. Yu, X. Li, F. Lei, Sens. Actuators B Chem., 220, 216
(2015).
[15]. H.K. Kaya, S. Cinar, G. Altundal, Y. Bayramlı, C. Unaleroglu, F. Kuralay, Sens. Actuators
B Chem., 346, 130425 (2021).
[16]. X. Ma, F. Gao, R. Dai, G. Liu, Y. Zhang, L. Lu, Y. Yu, Anal. Methods, 12, 1845 (2020).
[17]. W. Zhao, Y. Ma, J. Ye, J. Electroanal. Chem., 888, 115215 (2021).
[18]. L. Shahriary, A.A. Athawale, Int. J. Renew. Energy Environ. Eng, 2, 58 (2014).
[19]. A. García-Miranda Ferrari, C.W. Foster, P.J. Kelly, D.A. Brownson, C.E. Banks,
Biosensors, 8, 53 (2018).
[20]. Y. Xu, C. Li, W. Mei, M. Guo, Y. Yang, Med Biol Eng Comput., 57, 1515 (2019).
[21]. R. Pourghobadi, M.R. Baezzat, Anal. Bioanal. Chem, 4, 261 (2017).
[22]. A. Shaikh, J. Firdaws, S.S. Badrunnessa, M. Rahman, P.K. Bakshi, Int J Electrochem Sci, 6,
2333 (2011).
[23]. J. Yang, Y. Hu, Y. Li, Biosens. Bioelectron., 135, 224 (2019).
[24]. N. Dere, Z. Yolcu, M. Yolcu, Acta Chim Slov., 15, 69(1), 108 (2022).
[25]. N. Li, C. Nan, X. Mei, Y. Sun, H. Feng, Y. Li, Microchim Acta, 187, 1 (2020).
[26]. Z.-H. Sheng, X.-Q. Zheng, J.-Y. Xu, W.-J. Bao, F.-B. Wang, X.-H. Xia, Biosens.
Bioelectron., 34, 125 (2012).